Specifica Tecnica

2025-04-15
V1.0.0

sweetenteam@gmail.com

https://sweetenteam.github.io

Destinatari | Prof. Tullio Vardanega
Prof. Riccardo Cardin
AzzurroDigitale

Redattori | Valeri Mihail Belenkov
Davide Benedetti
Orlando Ferazzani
Nicolas Fracaro
Mouad Mahdi

Andrea Santi

Verificatori | Valeri Mihail Belenkov
Davide Benedetti
Matteo Campagnaro
Nicolas Fracaro
Mouad Mahdi

Andrea Santi

1/72

mailto:sweetenteam@gmail.com
https://sweetenteam.github.io

Specifica Tecnica

Registro delle modifiche

Versione | Data Autori Verificatori Dettaglio

1.0.0 2025-04-15 | Valeri Mihail Belenkov | Mouad Mahdi Approvazione per PB

0.0.9 2025-04-15 | Valeri Mihail Belenkov | Nicolas Fracaro Aggiunta documentazione raccolta e
salvataggio informazioni da Github e
Confluence

0.0.8 2025-04-12 | Nicolas Fracaro Valeri Mihail Belenkov | Aggiunta sezioni: Intorduzione
microservizio Informazioni, Recupero
informazioni dei dati da Jira e Recupero
delle informazioni rilevanti basato su query
dell’utente

0.0.7 2025-04-10 | Davide Benedetti Mouad Mahdi Stesura tracciamento stato requisiti
funzionali

0.0.6 2025-04-09 | Andrea Santi Mouad Mahdi Stesura microservizio denominato «Storico»

0.0.5 2025-04-08 | Davide Benedetti Nicolas Fracaro Aggiunta sezione microservizio ChatBot

0.0.4 2025-04-03 | Nicolas Fracaro Andrea Santi Sezione architettura di sistema e
introduzione backend

0.0.3 2025-03-27 | Orlando Ferazzani Matteo Campagnaro Aggiunte tecnologie di testing e
miglioramenti generali

0.0.2 2025-03-15 | Orlando Ferazzani Matteo Campagnaro Aggiunta sezione «Architettura frontend»

0.0.1 2025-02-27 | Mouad Mahdi Davide Benedetti Stesura sezione microservizio Api-Gateway

2/72

Specifica Tecnica

Indice
1) INtrodUzione o i e 8
1.1) Scopo del dOCUMENTOttt 8
1.2) Scopo del Prodottoooiiiiiiit 8
1.3) Miglioramenti e Maturitaoooiiiiitiitt 8
1.4) GlOSSATIO .\ttt ettt et et et e e e 8
1.5) RIFEIIMENT ... oot ettt et e e e e 9
1.5.1) Riferimenti normativi............iiiiiiiit ittt e e 9
1.5.2) Riferimenti informativiooooiiiiiiiii e 9
1.5.3) Riferimenti TeCIiClviiiit et e e 9
) R L3 T) = (- 9
2.1) Tecnologie di SVIIUPPO . ..nnnnii e 10
D0 0) T 0 Y13 o 10
2.1.2) Langchain ..o 10
2.1.3) NOGE S - vt ettt e 10
P 3 T N1 1 10
2.1.5) GIOQCLOUA ... e ettt 10
8 D) O ' ' ' 11
2.1.7) NOIUCAL . ..t e e 11
2.1.8) POStEIeSOL ..ttt 11
2.1.9) OCEOKIE .\ttt e 11
2.1.10) JATa)S oottt e 11
2.1.11) ConflUENCESS ...ttt ettt e 11
2.1.12) DOCKET ..o 12
D B0 X) TR = 1] 2 T 12
2.1.14) ReACHUOTY .. 12
2.1.15) TailwindCSS e 12
8 B0) TR L5« 7 T 12
2.1.17) ShAACIL ..o 12
2.1.18) LucideReactottt e 13
2.2) Tecnologie di teSHINGoouunnttt et ettt 13
P I () S 13
2.2.2) ESLIN ..ot 13
3) Architettura di SISTEMaottt e 14
3.1) Approccio alla Progettazioneoooiiiiiiii e 14
3.2) Contenitori e Deploy con DocKer 14
4) Architettura di SISEEIMAooui ettt e e 14
4.1) Strutturazione Generale del Sistemacoooiiiiiiiiiiie i i 14
4.2) Architettura del frontendottt e 14
4.3) Architetturadel Backend i 15
4.3.1) Architettura di Deploymento 15
4.3.1.1) Vantaggi dell’architettura a microservizi ..., 15
4.3.1.2) SVANEAZET - ..o e 15
4.3.1.3) Microservizi Identificati ... 15
4.3.1.4) Comunicazione tra Microservizi: RabbitMQciiiiiiiiiii i, 15
4.3.1.4.1) Pattern e implementazionecooii 16
4.3.2) Architetturalogica 16
4.3.2.1) Struttura dell’architettura esagonale ...t 16

3/72

Specifica Tecnica

4.3.2.2) VANTAGEL . ..ttt 16
4.3.3) Design pattern utilizzatioooiiiii i 17
4.3.3.1) Dependency INJectionuuuuuiii 17

5) Progettazione didettaglio 18
5.1) Progettazione frontendo 18
5.2) Architettura nel dettaglio oo 19
5.2.1) COMPONEILL - ...ttt ettt ettt ettt ettt ettt et e 19
5.2.2) Struttura dei dati 20
5.2.3) Gestione dello stato edeltemaoiiiiiiiiii i 22
5.2.4) Gestione e adattamento deidatiperlachat................... L 26
5.3) Microservizio Api-GateWayooiiittttttiittt e 29
5.3.1) RiSPOSta USe-Case: ...ttt ittt e et 30
5.3.2) StOrICO USE-Case: ...ttt ettt ettt et ettt et ettt e e e et 31
5.3.3) Scheduling del Fetch: o oo 32
5.4) Microservizio Chatbotooiiiiii e 34
5.4.1) Architettura € COMPONENTttt ettt ettt ettt aaas 34
5.4.1.1) Domain Layeroooiiiiii 34
5.4.1.2) Application LAYETttt 35
5.4.1.3) Adapters LAYuuutettttttt e 35
5.4.1.4) Infrastructure Layerttt 35
5.4.2) Flusso Principale di Elaborazione ... 36
5.4.3) Componenti Principali 37
5.4.3.1) Controllersooouiiiii e e 37
5.4.3.2) Use Cases € POrtSottt e e 37
5.4.3.3) SEIVICES ...ttt ettt e e 37
5.4.3.4) Adapters ...t 38
5.4.3.5) Entitd € Value ODjJectsvunetiiiie ettt 39
5.4.4) Integrazione con LangChain e Groqoooiiiiiiiiiiiiiiiii i 40
5.4.5) Comunicazione con Altri MiCrOSErviziooiiiiiiinneitiiiii i 41
5.4.6) Configurazione e Ambiente i 42
5.4.7) CONCIUSIONE ...ttt ettt et e ettt e ettt e e ettt ettt iia e e e e eaes 42
5.5) Microservizio Storico Chat oo e 43
5.5.1) QUALLIO CAST A USO « .ttt ettt ettt e 44
5.5.2) Recupero dello Storico della Chatooiiiiiiiiii 44
5.5.3) Inserimento di NUOVI MESSAZEL ..o oevvttiiittitttt et 47
5.5.4) Inserimento dell’ultima data di recupero informazionicoooviiiiiiiin.. 49
5.5.5) Ottenimento della data di ultimo recupero / aggiornamento informazioni............... 51
5.6) Microservizio INfOrmazioniouuueiiiiiie ettt it e 52
5.6.1) Funzionalita principali...............iiiii 52
5.6.2) Classi COMAIVISE ... vuttiti ettt it ettt e ettt e et e e et e e e e e e eaanns 52
5.6.2.1) Qdrant-information-repositoryouuuuuiiiii 52
5.6.2.2) Metadatacooouiiii 53
5.6.2.3) INfOrmationoo it 53
5.6.2.4) InformationEntityoiiiiii i 53
5.6.2.5) MetadataFntityuoiiie 53
5.6.2.6) ReSULL .. .ot 53
5.6.3) Recupero e memorizzazione dei datida GitHub ... 53
5.6.3.1) FetchGithubDTO i e e e 55
5.6.3.2) RepoDTO .. oo 55

Specifica Tecnica

5.6.3.3) GItAUDCINA . ..o oo e 56
5.6.3.4) REPOCIAottt 56
5.6.3.5) COIMIMILottt et et e e e e 56
5.6.3.6) FHLE oo oot 57
5.6.3.7) PULIREQUESTot 57
5.6.3.8) CommentPR 58
5.6.3.9) REPOSILOIY ..ottt 58
5.6.3.10) WOIKEIOWot 58
5.6.3.11) WOrkfloWRUIN ..o oo e e 59
5.6.3.12) GithubFetchAndStoreControlleroooiiiiiiiiiii i 59
5.6.3.13) GithubUsSeCaseottt e e 59
5.6.3.14) GithubServiceooiiiiiii 59
5.6.3.15) GithubCommitAPIPOItooiii e 60
5.6.3.16) GithUbFileAPIPOIt\ttt ittt ettt 60
5.6.3.17) GithubPullRequestAPIPOItooiieii e 60
5.6.3.18) GithubRepOSItOrYAPIPOITttt 60
5.6.3.19) GithubWorkflowWAPIPOIToueti ittt 60
5.6.3.20) GithubAPIAdAPLErooii e 60
5.6.3.21) GithubAPIREPOSILOTY ...\ttt ettt ettt e 61
5.6.3.22) GithubStoreInfoPOrtuiii et e 61
5.6.3.23) GithubStoreInfoAdapterooiuuiii 61
5.6.4) Recupero e memorizzazione dei dati da Confluencecooiiiiiiiiiiiiiiinnn. 61
5.6.4.1) ConfluenceControllero.iiiiiiiii e 61
5.6.4.2) ConfluenceUSECASEuiiiee ittt e et et 62
5.6.4.3) ConfluenCeSErvVICEottt e e e 62
5.6.4.4) ConfluenceDOCUMENLcoiiuiiiiii it e e e 62
5.6.4.5) ConfluenceAPIPOILttt 62
5.6.4.6) ConfluenceAPIAdapterooiiiiiiii 62
5.6.4.7) ConfluenceAPIRepOSITOrYuuiiiti it 62
5.6.4.8) ConfluenceStorePortiiii it 62
5.6.4.9) ConfluenceStoreAdapteruuuuuiii ittt 63
5.6.5) Recupero e memorizzazione deidatida Jira.............ooooiiiiiii i 63
5.6.5.1) Componenti Principali...........oooiiiiiiiii i 63
5.6.5.1.1) JiraFetchAndStoreControllerooiiiiiiiiiiii i eeann 64
5.6.5.1.2) JITAUSECASE ... vvttet ettt ettt ettt e e ettt e e e 64
5.6.5.1.3) JITASEIVICE ...ttt ettt ettt ettt e et e 64
5.6.5.1.4) THCKE ..ottt 64
5.6.5.1.5) JITACOIMITIENE . ..ottt e ettt et ettt e et et e e et et e et e e e nns 64
5.6.5.1.6) JITAAPIPOIT ...\ vttt ettt et e ettt et et e e e 64
5.6.5.1.7) JItaAPTAdAPLEr ... oot 64
5.6.5.1.8) JITAAPIREPOSILOTY ...ttt ettt e 64
5.6.5.1.9) SEOTEJITaPOTT ...\ttt ettt ettt ettt e e et e e 65
5.6.5.1.10) StOreJiraAdaplerttt 65
5.6.6) Recupero di informazioni rilevanti basato sulle query utente 65
5.6.6.1) Componenti Principali............o oo 66
5.6.6.1.1) RetrievalControlleroooiiiiiiiii i 66
5.6.6.1.2) RetrievallnfoUseCaseuiiiiniiiiie et e 66
5.6.6.1.3) RetrievallnfoServiceoouuuuiiiieii e 67
5.6.6.1.4) RetrieveCmdiiiit ittt e 67

Specifica Tecnica

5.6.6.1.5) RetrievallnfoPortcoviiiiiiiii i e 67

5.6.6.1.6) RetrievallnfoAdapter ... 67

6) Tracciamento TeQUISIEL uuuu et 68
6.1) Stato dei requisiti funzionali 68
6.2) Grafici TIasSUNTIVIt e et et e e e 72

6/72

Specifica Tecnica

Lista della immagini

Figura 1

Figura 2

Figura 3

Figura 4

Figura 5

Figura 6

Figura 7

Figura 8

Figura 9

Figura 10
Figura 11
Figura 12
Figura 13
Figura 14
Figura 15
Figura 16
Figura 17
Figura 18
Figura 19
Figura 20
Figura 21
Figura 22
Figura 23
Figura 24
Figura 25
Figura 26
Figura 27
Figura 28
Figura 29
Figura 30
Figura 31
Figura 32
Figura 33
Figura 34

Figura 35
Figura 36
Figura 37

Logo BuddyBoto 8
LogO TYPESCIIPL ..ottt 10
Logo di Langchainoooiiiiii i 10
Logo di NOde. s ..o oo 10
L0080 di NSt S oottt 10
Logo di GroqCloudooiiiiiii i 10
Logo di Qdrantoooiiiiiiii i 11
Logo di NOmMICAIL . ..ottt 11
Logo di PostgreSOL . ..ot 11
Logo di OCtOKIE ... ovvttttitittt 11
LOZO i JATaTS « o vt 11
Logo di ConfluenceJsoouuuunun e 11
LogO di DOCKET ...ttt 12
Logo di React]s . ..oooeiii e 12
Logo di ReaCtQUETYttt e 12
Logo di TailwindCSS 12
LOgO di NeXE JS oottt ettt ettt e et 12
Logo di ShadCn 13
Logo di LucideReact 13
LOZO i JESE .o eeeteee e 13
LOgO i ESLINT vtt ettt e e 13
UML frontend 18
Header della pagina in dark mode 19
Navbar della pagina in dark mode 19
ChatWindow della pagina in dark modse ... 19
Chat della paginaindarkmode 20
Diagramma UML del microservizio Api-Gatewayovvveiiiiiiiiiiiiiiiiiiieeen... 29
UML CRATBOL . . . ettt ettt e 34
Progettazione del Microservizio Storico Chat ..., 43
Diagramma UML di dettaglio riguardo alla raccolta delle informazioni di Github 53
Diagramma UML di dettaglio riguardo al salvataggio delle informazioni di Github 54
Diagramma UML di dettaglio riguardo a Confluenceooociiiiiiiin L. 61

Diagramma delle classi per il caso d'uso di recupero e memorizzazione dei ticket di Jira .63

Diagramma delle classi per il caso d'uso di recupero di informazioni rilevanti basato sulle

QUETY ULEINEE ..o 65
Stato dei requisiti funzionali obbligatoricoo i 72
Stato dei requisiti funzionali opzionali 72
Stato dei requisiti funzionali desiderabili.............. ... 72

7/72

Specifica Tecnica

1) Introduzione

1.1) Scopo del documento

Il presente documento ha lo scopo di fungere da risorsa esaustiva per la spiegazione e conseguente
comprensione degli aspetti tecnici del progetto digitale:;

bot

Figura 1: Logo BuddyBot

La sua finalita primaria € quella di fornire una panoramica dettagliata e approfondita delle scelte
progettuali, architetturali e tecnologiche del sistema sviluppato. In particolare, si intende fornire
un’analisi profonda estesa al livello di progettazione piu basso, includendo spiegazione, definizione e
motivazione delle scelte effettuate, e dei adottati.

I1 documento ha quindi scopi molteplici:

+ Motivare le scelte progettuali e di sviluppo adottate;

+ Fungere da guida per il processo di sviluppo e manutenzione del sistema;

« Fornire una vista panoramica e monitorare la dei requisiti del progetto identificati
nel documento Analisi dei Requisiti (visionabile qui);

L’adeguatezza e la completezza del documento (e del progetto) sono in costante evoluzione e miglio-
ramento in base ai ricevuti e sulla base dell’aggiornamento dei requisiti.

1.2) Scopo del prodotto

L’obiettivo del progetto € la realizzazione di un sotto forma di atto a fornire
un supporto al team di digitale: nella gestione delle attivita di un progetto in corso di sviluppo.
Nella fattispecie, il chatbot utilizza delle e un modello di per, rispettivamente, reperire
informazioni da sistemi esterni utilizzati dall’azienda (piu specificatamente, Jira, GitHub e Confluence)
e elaborare una risposta. Questa risposta puo contenere del semplice testo, un link o un Al
chatbot ha una singola sessione per ogni utente, e puo essere utilizzato da piu utenti contemporanea-
mente.

Il team é confidente che questo genere di prodotto migliorera il workflow del team di rodigitale:,
riducendo i tempi di risposta e migliorando la qualita del lavoro svolto.

1.3) Miglioramenti e maturita

Questo documento e redatto con approccio incrementale e modificato nel tempo per riflettere
I’andamento del progetto e le decisioni prese. In particolare, il documento é soggetto a modifiche in
base ai feedback ricevuti e all’evoluzione dei requisiti del progetto. Per questo motivo, il documento
non € considerabile definitivo, esaustivo e completo fino al raggiungimento di una versione stabile
dello stesso (1.0.0 o superiore).

1.4) Glossario
Per evitare ambiguita e incomprensione riguardanti la terminologia tecnica utilizzata nel documento,

viene redatto e adottato un Glossario contenente le definizioni dei termini tecnici utilizzati. Il Glossario
é consultabile qui e i termini presenti nel documento sono evidenziati con

8/72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#design-pattern
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#code-coverage
https://sweetenteam.github.io/docs/intro
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#feedback
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#chatbot
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#web-app
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#api
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#llm
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#code-block
https://sweetenteam.github.io/docs/RTB/glossario

Specifica Tecnica

1.5) Riferimenti

1.5.1) Riferimenti normativi

« Presentazione pdf del capitolato C9: C9p.pdf (versione disponibile al 2025-03-20)
+ Norme di Progetto: Norme_di_Progetto_v1.0.0.pdf
« Piano di Qualifica: Piano_di_Qualifica_v1.0.0.pdf

1.5.2) Riferimenti informativi

« Analisi dei Requisiti: Analisi_dei_Requisiti_v1.1.0.pdf
Glossario: Glossario

+ I diagrammi dei casi d’uso: Use case
+ Progettazione: I pattern architetturali Software Architecture Patterns

« Verifica e validazione: analisi statica (T10): analisi statica
+ Verifica e validazione: analisi dinamica aka testing (T11): analisi dinamica
+ Programmazione: SOLID programming principles

1.5.3) Riferimenti Tecnici
« Documentazione ufficiale Typescript: Typescript

» Documentazione ufficiale Langchain: Langchain
« Documentazione ufficiale Node]Js: Node.js

« Documentazione ufficiale Nest]Js: Nest.js

« Documentazione ufficiale Groq: GroqCloud

« Documentazione ufficiale Qdrant: Qdrant

« Documentazione ufficiale NomicAi: NomicAi

« Documentazione ufficiale PostgreSQL: PostgresSQL

« Documentazione ufficiale Oktokit: Octokit

« Documentazione JiraJs: JiraJs

« Documentazione Confluence Js: Confluence]s

« Documentazione ufficiale Docker: Docker

« Documentazione ufficiale React]s: React

« Documentazione ufficiale ReactQuery (TanStack) ReactQuery
« Documentazione ufficiale TailwindCSS: Tailwind CSS
« Documentazione ufficiale NextJs Next.js

2) Tecnologie
In questo capitolo sono elencate tutte le tecnologie della che il team utilizza per lo sviluppo
del progetto di digitale: come linguaggi di programmazione, \ e

9/72

https://www.math.unipd.it/~tullio/IS-1/2024/Progetto/C9p.pdf
https://sweetenteam.github.io/pdf/documentazione_interna/rtb/Norme_di_Progetto_v1.0.0.pdf
https://sweetenteam.github.io/pdf/documentazione_esterna/rtb/Piano_di_Qualifica_v1.0.0.pdf
https://sweetenteam.github.io/pdf/documentazione_esterna/rtb/Analisi_dei_Requisiti_v1.1.0.pdf
https://sweetenteam.github.io/docs/RTB/Glossario
https://www.math.unipd.it/~rcardin/swea/2022/Diagrammi%20Use%20Case.pdf
https://www.math.unipd.it/~rcardin/swea/2022/Software%20Architecture%20Patterns.pdf
https://www.math.unipd.it/~tullio/IS-1/2023/Dispense/T10.pdf 2024/03/02)
https://www.math.unipd.it/~tullio/IS-1/2023/Dispense/T11.pdf 2024/03/02)
https://www.math.unipd.it/~tullio/IS-1/2023/Dispense/L02.pdf
https://www.typescriptlang.org/
https://langchain.io/
https://nodejs.org/
https://nestjs.com/
https://groq.com/
https://www.qdrant.io/
https://nomic.ai/
https://www.postgresql.org/
https://octokit.github.io/rest.js/v18
https://mrrefactoring.github.io/jira.js/
https://mrrefactoring.github.io/confluence.js/
https://www.docker.com/
https://reactjs.org/
https://react-query.tanstack.com/
https://tailwindcss.com/
https://nextjs.org/
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#tech-stack
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#framework
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#librerie
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#ambienti-di-sviluppo
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#ambienti-di-sviluppo

A
Specifica Tecnica

SWEETEN

2.1) Tecnologie di sviluppo

2.1.1) Typescript

Typescript & un linguaggio di programmazione open-source. E un super-set di JavaScript, che aggiunge
forte tipizzazione statica. Il team ha scelto di utilizzare Typescript per la sua tipizzazione statica, che
permette di ridurre gli errori di programmazione e di rendere il codice piu leggibile e manutenibile.

TS

Figura 2: Logo Typescript

2.1.2) Langchain

Langchain & un framework open-source per la creazione di applicazioni basate sull’utilizzo Ll
team ha scelto di utilizzare Langchain per la sua facilita d’uso e per la sua integrazione con altri servizi
come Qdrant e Grogq, oltre che ad avere una libreria in Typescript, rendendolo compatibile con il nostro

Figura 3: Logo di Langchain

linguaggio.

2.1.3) Node.js

Node.js € un ambiente di runtime open-source per '’esecuzione di codice JavaScript lato server. Il team
ha scelto di utilizzare Node.js per la sua scalabilita e per la sua facilita di utilizzo.

S

Figura 4: Logo di Node.js
2.1.4) Nest.js

Nest.js € un framework per la creazione di applicazioni server-side in Node.js. Il team ha scelto di
utilizzare Nest.js per la sua struttura modulare e per la sua scalabilita e per la facilita con cui € possibile

“‘$ nest

Figura 5: Logo di Nest.js

creare i design pattern pitt opportuni.

2.1.5) GroqCloud

E una piattaforma Al basata su hardware specializzato (LPU) per inferenza ad alte prestazioni, supporta
modelli LLM e integrazione con strumenti Al per elaborazione in tempo reale.

groq

Figura 6: Logo di GroqCloud

10/ 72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#llm

Specifica Tecnica

SWEETEN

2.1.6) Qdrant

Qdrant & un motore di ricerca e analisi di dati non strutturati, supporta I'indicizzazione e la ricerca di
dati in tempo reale, oltre che la ricerca di dati basata su vettori.

Figura 7: Logo di Qdrant
2.1.7) NomicAi

NomicAi é un servizio di elaborazione del linguaggio naturale (NLP) basato su modelli LLM che
permette embedding di testo. Il team ha scelto di utilizzare NomicAi per la sua facilita d’uso e per la
sua integrazione con altri servizi come Langchain e Groq.

OMI

Figura 8: Logo di NomicAi
2.1.8) PostgreSQL

PostgreSQL é un sistema di gestione di database relazionale open-source. Il team ha scelto di utilizzare
PostgreSQL per la sua affidabilita e per la sua estensiva documentazione.

Figura 9: Logo di PostgreSQL
2.1.9) Octokit

Octokit & un toolkit per I'interazione con le API di GitHub. Il team ha scelto di utilizzare Octokit per
la sua estesa documentazione e per utilizzare un prodott ufficiale per interagire on GitHub stesso.

(s

Figura 10: Logo di Octokit
2.1.10) JiraJs

JiraJs € un toolkit per l'interazione con le API di Jira. Il team ha scelto di utilizzare JiraJs per la sua
documentazione affidabile e per la sua facilita d’uso.

Figura 11: Logo di Jira]Js
2.1.11) Confluence]s

Confluence]Js & un toolkit per I'interazione con le API di Confluence. Il team ha scelto di utilizzare
Confluence]s per la sua documentazione affidabile e per la sua facilita d’uso.

11/72

1 . .
Specifica Tecnica
SWEETEN

Figura 12: Logo di Confluence]s
2.1.12) Docker

Docker é una piattaforma open-source per lo sviluppo, il deploy e I'esecuzione di applicazioni in
container. Il team ha scelto di utilizzare Docker per la sua facilita di deploy e per la sua scalabilita.

@ docker
Figura 13: Logo di Docker

2.1.13) React.js

React]s € una libreria open-source per la creazione di interfacce utente. Il team ha scelto di utilizzare
React]s per la sua immediatezza nell’uso, per la sua scalabilita e per la sua estesa documentazione.

Figura 14: Logo di React]s
2.1.14) ReactQuery

ReactQuery € una libreria open-source per la gestione dello stato in React. Il team ha scelto di utilizzare
ReactQuery per la sua integrazione con React.

React Query
Figura 15: Logo di ReactQuery
2.1.15) TailwindCSS

TailwindCSS € un framework CSS utilizzato per la creazione di interfacce utente. Il team ha scelto di
utilizzare TailwindCSS per la sua facilita d’uso e per la sua documentazione dettagliata oltre che per
utilizzare una tecnologia pit compatibile con il resto.

R
Q'

Figura 16: Logo di TailwindCSS
2.1.16) Next.js

Next.js € un framework per la creazione di applicazioni web in React. Il team ha scelto di utilizzare
Next.js per i metodi nativi a disposizione per le richieste alle API e per utilizzare una tecnologia pit
nuova rispetto al resto.

NEXT.s

Figura 17: Logo di Next.js
2.1.17) ShadCn

12/ 72

Specifica Tecnica

Libreria di componenti pre-impostati, pronti all’'uso e altamente customizzabili. Il team ha scelto di
utilizzare ShadCn per la sua facilita d’'uso e per la sua documentazione dettagliata, oltre che per
sfruttare al massimo il principio del riuso.

7

Figura 18: Logo di ShadCn
2.1.18) LucideReact

Libreria di icone SVG pronte all’uso. Il team ha scelto di utilizzare LucideReact per la sua facilita d’uso
e per la sua documentazione dettagliata, oltre che per sfruttare al massimo il principio del riuso.

©,

Figura 19: Logo di LucideReact

2.2) Tecnologie di testing

2.2.1) Jest

Jest & un framework di testing per JavaScript. Il team ha scelto di utilizzare Jest per la sua facilita
d’uso e per la sua integrazione con Typescript. Utilizzato per Analisi dinamica in quanto richiede

I’esecuzione del codice.

Figura 20: Logo di Jest
2.2.2) ESLint

ESLint & uno strumento di analisi statica del codice per identificare e segnalare errori di programma-
zione. Il team ha scelto di utilizzare ESLint per la sua facilita d’uso e per la sua integrazione con
Typescript. Utilizzato per Analisi statica in quanto non richiede ’esecuzione del codice.

9

ESLint

Figura 21: Logo di ESLint

13/72

Specifica Tecnica

3) Architettura di Sistema

3.1) Approccio alla Progettazione

La progettazione dell’architettura di sistema di BuddyBot € stata condotta secondo un approccio
top-down. Questo metodo ha permesso di definire inizialmente i macro-componenti del sistema, garan-
tendo una visione chiara e coerente sin dalle prime fasi. Successivamente, si € passati a un raffinamento
progressivo delle specifiche dei singoli moduli e componenti, assicurando che ciascuno fosse progettato
in modo modulare e scalabile. Tale approccio ha facilitato la suddivisione delle responsabilita tra i
membri del team, migliorando la tracciabilita delle decisioni progettuali.

3.2) Contenitori e Deploy con Docker

Per garantire portabilita e facilitare il deploy, é stato adottato Docker e Docker Compose, con un
container per ogni servizio e per le risorse di supporto.

L’utilizzo di Docker porta molti vantaggi, tra cui:

+ Isolamento dei servizi: Ogni microservizio gira in un ambiente indipendente, evitando conflitti tra
dipendenze.

« Portabilita: Il sistema puo essere eseguito su qualsiasi piattaforma senza configurazioni complesse.

Facilita di scalabilita: Puo essere facilmente distribuito su piu istanze per gestire carichi elevati.

+ Coerenza ambientale: Assicura che gli ambienti di sviluppo, test e produzione siano identici,
riducendo i problemi legati a differenze di configurazione.

Docker Compose viene utilizzato per orchestrare e avviare automaticamente i container, garantendo
Pinterconnessione tra i microservizi e i database senza necessita di configurazioni manuali complesse.

4) Architettura di sistema

4.1) Strutturazione Generale del Sistema

Il sistema ¢ stato suddiviso in due macro-componenti principali:

+ Frontend: Interfaccia utente per 'interazione con BuddyBot.
« Backend: Gestione della logica applicativa e delle fonti dati, esposto tramite API REST.

Questa suddivisione consente di ottenere diversi benefici:

« Indipendenza tra frontend e backend: Gli aggiornamenti possono avvenire separatamente, evitando
impatti sull’intero sistema.

« Possibilita di supportare frontend multipli: L’uso di API REST consente l'integrazione di differenti
interfacce utente, come web app, mobile app e desktop app (anche se attualmente non implementato,
questa architettura lo renderebbe facilmente realizzabile in futuro).

+ Scalabilita e manutenibilita migliorate: Il backend puo evolvere indipendentemente dall’interfaccia
utente, permettendo di migliorare le prestazioni senza dover aggiornare ogni client.

4.2) Architettura del frontend

Per la parte di frontend, il team ha utilizzato , framework basato su React, per la creazione
di pagine web. Next.Js & stato scelto per la sua facilita d’uso e per la sua scalabilita. Inoltre, il team ha
utilizzato per la creazione di interfacce utente. TailwindCSS ¢ stato scelto per la sua

14/ 72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#next.js
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#tailwindcss

Specifica Tecnica

facilita d’uso e per la sua documentazione dettagliata, oltre che per la semplificazione della specificita
di CSS base.

La scelta di tali tecnologie ha portato il team ad uno sviluppo a componenti del frontend. Saranno
questi poi a comporre la struttura della web app. L’approccio a componenti, tipico di React, permette
una maggiore modularita e scalabilita del codice, oltre che ad una maggiore facilita di manutenzione,
evitando di avere tutto il codice in una singola pagina.

BuddyBot € una , ovvero una Single Page Application, che permette di avere una sola pagina
web che viene caricata una sola volta e che viene aggiornata dinamicamente senza dover ricaricare la
pagina. Questo permette di avere una maggiore velocita di caricamento e di navigazione all’interno
della web app. Inoltre, essendo un ChatBot, non vi era la necessita di avere piu di una pagina, anche
se il team ha previsto la possibilita di aggiungere nuove pagine in futuro.

4.3) Architettura del Backend

4.3.1) Architettura di Deployment

Il backend ¢ strutturato secondo un’architettura a microservizi, dove ogni servizio é responsabile di una
specifica funzionalita del sistema. Questo approccio ha permesso di ottenere un sistema pit modulare
e scalabile, pur affrontando alcune sfide specifiche.

4.3.1.1) Vantaggi dell’architettura a microservizi

+ Scalabilita orizzontale: I microservizi possono essere replicati per gestire carichi di lavoro elevati.

+ Indipendenza di deploy: Ogni servizio puo essere aggiornato, riavviato o sostituito senza impattare
il resto del sistema.

+ Manutenibilita e modularita: Separare le funzionalita in microservizi facilita la gestione del codice e
I'aggiunta di nuove feature.

« Tecnologie eterogenee: Ogni microservizio puo essere sviluppato con la tecnologia piu adatta senza
vincoli imposti da un monolite.

4.3.1.2) Svantaggi

Overhead di gestione: A differenza di un’architettura monolitica, i microservizi richiedono una
gestione pit complessa, sia in fase di sviluppo che di deploy.

» Comunicazione tra servizi: Per garantire un’integrazione efficiente, é stato necessario implementare
un sistema di messaggistica asincrono, come RabbitMQ, per la comunicazione tra microservizi.

4.3.1.3) Microservizi Identificati

11 backend é suddiviso in quattro microservizi principali:

« API Gateway: Instrada le richieste tra frontend e microservizi interni, gestisce il bilanciamento del
carico e pianifica il recupero delle informazioni dalle fonti.

« Chatbot: Genera risposte basandosi sulle richieste ricevute e sulle informazioni contestuali fornite
dal database vettoriale.

« Storico: Salva e recupera le domande e le risposte dal database relazionale (PostgreSQL) per mante-
nere uno storico delle conversazioni.

« Information Vector DB: Recupera informazioni dalle fonti, effettua embedding in forma vettoriale
e le memorizza nel database vettoriale (Qdrant), fornendo dati contestuali al chatbot.

4.3.1.4) Comunicazione tra Microservizi: RabbitMQ

15/72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#spa

Specifica Tecnica

Nell’architettura a microservizi di , la comunicazione efficiente tra componenti & garantita
da un sistema di messaggistica asincrona basato su RabbitMQ.

L’adozione di RabbitMQ offre benefici fondamentali:

o Flessibilita temporale: Determina quando un microservizio elabora una richiesta, eliminando
blocchi nell’esecuzione.

Scalabilita orizzontale: I messaggi vengono distribuiti in code ed elaborati in parallelo.

Resilienza avanzata: I messaggi persistono nelle code quando i servizi destinatari sono tempora-
neamente non disponibili.
« Disaccoppiamento: Riduce le dipendenze dirette tra microservizi, semplificando la manutenzione.

4.3.1.4.1) Pattern e implementazione

Il sistema utilizza principalmente il pattern RPC asincrono (Request/Response) per le comunica-
zioni tra i microservizi, sfruttando l'integrazione tra Nest]S e RabbitMQ:

+ Nest]S gestisce automaticamente gli identificativi di correlazione tra richieste e risposte.
+ Il framework @nestjs/microservices fornisce astrazioni per configurare microservizi basati su
code.
« Ogni microservizio implementa:
» Listener dedicati che si connettono a specifiche code RabbitMQ.
» Handler che associano pattern predefiniti alle funzioni di business logic.
» Client per pubblicare messaggi in modo asincrono.

4.3.2) Architettura logica

Il sistema e progettato seguendo I'architettura esagonale, un modello architetturale che crea una
separazione netta tra la business logic dell’applicazione e il mondo esterno, garantendo indipendenza
da tecnologie specifiche e maggiore manutenibilita.

4.3.2.1) Struttura dell’architettura esagonale

Logica di business rappresenta il nucleo dell’applicazione, contenente il dominio e le regole di busi-
ness. E completamente indipendente da implementazioni tecnologiche specifiche, garantendo massima
portabilita e riutilizzabilita.

Porte definiscono i punti di interazione tra il nucleo e il mondo esterno:

« Porte in Entrata (Use Case): Permettono ai componenti esterni di invocare il nucleo, fornendo un
accesso strutturato e proteggendo la logica di dominio da implementazioni specifiche.

« Porte in Uscita: Consentono al nucleo di accedere a funzionalita esterne (database, servizi di terze
parti) mantenendo l’astrazione tecnologica.

Services implementano le porte in entrata e fanno parte della business logic. Si concentrano esclusi-
vamente sulla logica di dominio, rimanendo indipendenti da aspetti tecnologici specifici.

Adapters costituiscono il livello piu esterno dell’applicazione e si dividono in:

« Adapters in Entrata (Controller): Gestiscono e convertono le richieste provenienti dall’esterno
verso il core.

« Adapters in Uscita: Gestiscono la comunicazione dal core verso servizi e tecnologie esterne.

4.3.2.2) Vantaggi

Questa architettura garantisce:

16 /72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#buddybot

Specifica Tecnica

« Flessibilita: L’applicazione rimane indipendente dalle tecnologie esterne, facilitando modifiche e
aggiornamenti senza impattare la logica di business.

« Testabilita: La logica di business puo essere testata in isolamento, semplificando lo sviluppo test-
driven.

+ Resilienza: Il sistema diventa piu resistente ai cambiamenti tecnologici, permettendo di sostituire
componenti esterni senza modificare il nucleo applicativo.

4.3.3) Design pattern utilizzati
4.3.3.1) Dependency Injection

Uno degli aspetti fondamentali dell'implementazione del backend é stato I'uso del pattern di Depen-
dency Injection, nativamente supportato da Nest]S. Questo approccio ha permesso di ridurre
l’accoppiamento tra i componenti, semplificando la testabilita e la manutenzione del sistema spostando
all’esterno della classi la risoluzione delle dipendenze.

NestJS adotta un container per le dipendenze che consente di dichiarare i provider una sola volta
e iniettarli ovunque siano richiesti tramite il costruttore delle classi. Ogni modulo dell’applicazione
puo registrare provider, che vengono poi risolti automaticamente dal framework quando una classe
dichiara di averne bisogno.

17/ 72

Specifica Tecnica

5) Progettazione di dettaglio

5.1) Progettazione frontend

Header

+return(): React TSX Element

Navbar

& Page

+return(): React. TSX Element

Chat

+ return{): React. TSX_Element

+ chatRef: RefObject=HTMLDivElement=

!

+ handleLoadHistory(): Promise<void=

Switch

!

+ theme: string
+ setTheme(theme: string): void

ChatQA

+ toggleTheme(): void
+ return{): React. TSX_Element

+ gquestionAnswer. QuestionAnswer

ChatWindow

)

D + const adapter: Adapter

Target
+requestHistory. Promise=QuestionAnswer[]>

+ return{): React. TSX_Element

+requestAnswer: Promise={answer: Message, id: string, lastUpdated: string}=

!

\

ChatProvider

Adapter

+ adaptee: Adaptee

+ state: ChatState

+ dispatch: React Dispatch=ChatAction=

+ requestHistory(id: string, offset. number): Promise=QuestionAnswer[]=
+ requestAnswer(question: Message). Promise={ answer. Message; id: string;

+ loadHistory(): Promise=void=

+return(): React TSX_Element

+ gendMessage(texi: siring): Promize=<void=

lastUpdated: string }=

- adaptMessage(data: any): Message

- adaptQuestionAnswer({data: any): QuestionAnswer

- adaptQuestionAnswerArray(dataAmay: any[]): QuestionAnswerf]

/'

+return(). React. TSX.Element

InputForm

!

Bubble

+ message: Message
+ user: boolean

+ amror: boolean

+ lpading: boolean

+ timestamp: siring

+ lastUpdated: string

+ text: string

+ charCount: number

+ hasEmor: boolean

+ textareaRef. RefObject=HTMLTextAreaElemeni=

+return(): React TSX Element

+ handleSendMessage(event: React FormEvent):
Promise=void=

+ handlelnput{event:

React ChangeEvent=HTMLTextAreaElement=): void
+ handlePaste{event:

React ClipboardEvent=HTMLTextAreaElement=): void
+ adjustHeight(): void

+return(): React. TSX.Element

Figura 22: UML frontend

18 /72

- adaptMessageToJSOM(question: Message). any

i

Adaptee

+ feichHistory(id: string, ofiset. number): Promise<any[]=
+ feichCuestion(data: any). Promise=any=

ChatReducer

+ chatReducer(state: ChatState, action:
ChatAction). ChatState

o
N2 Specifica Tecnica
SWEETEN

5.2) Architettura nel dettaglio

5.2.1) Componenti

Come detta lo standard di Next . JS, la pagina principale € page. tsx, che contiene la struttura base della
web app. All'interno di questa pagina, vengono poi importati i vari componenti che compongono la
web app. I componenti principali sono:

+ Header.tsx ¢ progettato per mostrare il logo e il nome dell’applicazione in modo ben visibile in cima
alla pagina, contribuendo immediatamente a definire ’'identita visiva della web app.

bot

Figura 23: Header della pagina in dark mode

 Navbar.tsx gestisce la navigazione; anche se BuddyBot ¢ una Single Page Application, la navbar
offre all’utente la possibilita di accedere rapidamente ad altri siti web utili.

0O ¢ X ad: S

Figura 24: Navbar della pagina in dark mode

+ ChatWindow.tsx integra due componenti distinti: il componente Chat. tsx per visualizzare lo storico
della conversazione e I'InputForm.tsx per 'inserimento dei messaggi, creando cosi un’unica area
interattiva per gestire la chat.

What is your favorite type of nut?
28 marzo 2025, 20:40 @

| like hazelnuts.

‘@ (i} 28 marzo 2025, 20:40

What is your favorite type of seed?
28 marzo 2025, 20:40 @

| like sesame seeds.

‘@ (1] 28 marzo 2025, 20:40

Type a message...

0/10000

Figura 25: ChatWindow della pagina in dark modse
+ Chat.tsx si occupa di mostrare 'intera conversazione tra utente e chatbot. Al suo interno, ogni
scambio & rappresentato da un componente ChatQA. tsx, che racchiude due Bubble.tsx: una per il
messaggio dell’'utente e una per la risposta generata dal chatbot.

19/72

Specifica Tecnica
SWEETEN

28 marzo 2025, 20:40 @

| like hazelnuts.

‘D () 28 marzo 2025, 20:40

What is your favorite type of seed?
28 marzo 2025, 20:40 @

| like sesame seeds.

- o 28 marzo 2025, 20:40
Last Updated: 28 marzo 2025, 20:40

Figura 26: Chat della pagina in dark mode

Ci sono inoltre altre componenti, utilizzate a supporto dei componenti principali. Questi sono inclusi
nella cartella denimoinata ui. Queste componenti sono:

e« Button.tsx;

« LoadMessage. tsx;

¢ LoadChat.tsx;

e ErrorAlert.tsx;

e InfoAlert.tsx;

e MarkDown. tsx;

« Avatar.tsx;

» MessageAvatar.tsx;

5.2.2) Struttura dei dati

Per sviluppare al meglio e piu dettagliatamente il team ha definito dei tipi, che gestiscono diversi aspetti
della web app. Questi tipi sono definiti all’interno della cartella types e sono:

o Action.ts
Definisce le possibili azioni che la chat puo eseguire (es. caricamento della cronologia, aggiunta di
messaggi, gestione degli errori).

1 import { Message } from "@/types/Message";

2 import { QuestionAnswer } from "./QuestionAnswer";

3

4 export type ChatAction =

5 | { type: "LOAD HISTORY START" }

. | { type: "LOAD HISTORY SUCCESS"; payload: QuestionAnswer[], hasMore:
boolean }

7 | { type: "LOAD HISTORY ERROR", error: number }

8 | { type: "ADD MESSAGE START"; id: string, question: Message }

) | { type: "ADD MESSAGE SUCCESS"; id: string, answer: Message, newid: string,
lastUpdated: string }

10 | { type: "ADD MESSAGE ERROR"; id: string, error: number }

11 | { type: "SCROLL DOWN" };

20/ 72

SWEETEN

Specifica Tecnica

« ChatContext.ts
Definisce il contesto della chat, includendo lo stato, il dispatch e le funzioni per il caricamento della
cronologia e 'invio dei messaggi.

import { createContext } from "react";
import { ChatAction } from "./Action";
import { ChatState } from "./ChatState";

export interface ChatContext {
state: ChatState;
dispatch: React.Dispatch<ChatAction>;
loadHistory: () => Promise<void>;
sendMessage: (text: string) => Promise<void>;

}

export const ChatContext = createContext<ChatContext | undefined>(undefined);

« ChatProviderProps.ts
Specifica le proprieta richieste al provider della chat, inclusa la dipendenza dall’adapter.

import { Target } from "@/adapters/Target";
import { ReactNode } from "react";

export interface ChatProviderProps {
children: ReactNode;
adapter: Target;

« ChatState.ts
Descrive lo stato della chat e definisce lo stato iniziale.

import { QuestionAnswer } from "./QuestionAnswer";

export interface ChatState {
messages: QuestionAnswer[];
loadingHistory: boolean;
errorHistory: number;
hasMore: boolean;
hasToScroll: boolean;

}

export const initialState: ChatState = {
messages: [],
loadingHistory: true,
errorHistory: 0,
hasMore: false,
hasToScroll: false,
}

o CustomError.ts
Definisce un errore personalizzato con un codice e dettagli opzionali, migliorando la gestione e il
tracciamento degli errori.

export class CustomError extends Error {
public code: number;
public details?: any;

constructor(code: number, message: string, details?: any) {

21/72

Specifica Tecnica

SWEETEN

super(message) ;

this.code = code;

this.details = details;

Object.setPrototypeOf(this, CustomError.prototype);

« Message.ts
Rappresenta un singolo messaggio con il contenuto e il timestamp.

export interface Message {
content: string;
timestamp: string;

}

 QuestionAnswer.ts
Modella la struttura per una domanda e la sua risposta, includendo flag per errori e stato di carica-

mento

import { Message } from "./Message";
export interface QuestionAnswer {

id: string;

question: Message;

answer: Message;

error: number;

loading: boolean;

lastUpdated: string;

5.2.3) Gestione dello stato e del tema

Il frontend di BuddyBot inoltre utilizza un Reducer e due Providers che sono utilizzati per separare
la logica e gestire lo stato in modo efficiente.

« Il ThemeProvider gestisce il tema visivo dell’applicazione, permettendo di applicare facilmente
modalita chiare o scure (dark/light mode). Utilizzando il contesto di next-themes, consente a tutti
i componenti dell’app di accedere e aggiornare dinamicamente il tema senza dover modificare
manualmente ogni singolo elemento, migliorando ’esperienza utente e semplificando la gestione del
design. Questo provider viene utilizzato all’interno del file layout. tsx.

"use client";

import React from "react";
import { ThemeProvider as NextThemesProvider, ThemeProviderProps } from "next-

themes";
export function ThemeProvider({ children, ...props }: ThemeProviderProps) {
return (
<NextThemesProvider {...props}>
{children}
</NextThemesProvider>
)
}

22/172

ol . .
2 Specifica Tecnica
SWEETEN

« Il ChatProvider & un provider che incapsula lo stato e le funzioni per gestire la chat, come il
caricamento della cronologia e I'invio di messaggi. Utilizza il useReducer per gestire lo stato della
chat, che include i messaggi, lo stato di caricamento, e gli errori. Ogni azione (come 'aggiunta di un
messaggio o il caricamento della cronologia) € gestita tramite un tipo di azione definito nel reducer,
che aggiorna lo stato in base al tipo di azione ricevuta. Questo provider viene utilizzato all’interno
del file ChatWindow. tsx.

import React from "react";

import { useContext, useReducer, useEffect } from "react";
import { chatReducer } from "@/reducers/chatReducer";

import { initialState } from "@/types/ChatState";

import { Message } from "@/types/Message";

import { QuestionAnswer } from "@/types/QuestionAnswer";
import { generateld } from "@/utils/generateld";

import { ChatContext } from "@/types/ChatContext";

import { ChatProviderProps } from "@/types/ChatProviderProps";
import { CustomError } from "@/types/CustomError";

({ children, adapter }: ChatProviderProps) => {
useReducer(chatReducer, initialState);

export const ChatProvider
const [state, dispatch]

const loadHistory = async (): Promise<void> => {
dispatch({ type: "LOAD HISTORY START" });
try {
if (state.messages.length === 0) {
const olderMessages: QuestionAnswer[] = await
adapter.requestHistory("", 10);
for (let 1 = 0; i < olderMessages.length; i++) {
if (olderMessages[i].answer.content.length > 100000) {
olderMessages[i].error = 1;
}
}
dispatch({ type: "LOAD HISTORY SUCCESS", payload: olderMessages,
hasMore: !(olderMessages.length < 10) });

dispatch({ type: "SCROLL DOWN" });
}
else {
const olderMessages: QuestionAnswer[] = await
adapter.requestHistory(state.messages[0].id, 10);
dispatch({ type: "LOAD HISTORY SUCCESS", payload: olderMessages,
hasMore: !(olderMessages.length < 10) });
}
}
catch (error) {
if (error instanceof CustomError) dispatch({ type: "LOAD HISTORY_ ERROR",
error: error.code });
else dispatch({ type: "LOAD HISTORY ERROR", error: 500 });
}
+i

const sendMessage = async (text: string) => {
const id = generateld();
const newMessage: Message = {
content: text,
timestamp: new Date().toISO0String(),

}

dispatch({ type: "ADD MESSAGE START", id: id, question: newMessage });
dispatch({ type: "SCROLL DOWN" });
try {

23/172

N

SWEETEN

Specifica Tecnica

const botResponse: { answer: Message, id: string, lastUpdated: string } =

await adapter.requestAnswer(newMessage);

if (botResponse.answer.content.length > 100000) dispatch({ type:

"ADD MESSAGE_ERROR", id: id, error: 1 });

else dispatch({ type: "ADD MESSAGE SUCCESS", id: id, answer:

botResponse.answer, newid: botResponse.id, lastUpdated:
botResponse.lastUpdated });

}

catch (error) {
if (error instanceof CustomError) dispatch({ type: "ADD MESSAGE ERROR",

id: id, error: error.code });

};

else dispatch({ type: "ADD MESSAGE ERROR", id: id, error: 501 });
}

};

useEffect(() => {
loadHistory();

}, [

return (

<ChatContext.Provider value={{ state, dispatch, loadHistory, sendMessage }}

{children}
</ChatContext.Provider>

)8

// Hook per usare il contesto
export const useChat = () => {

};

const context = useContext(ChatContext);
if (!context) {
throw new Error("useChat must be used within a ChatProvider");

}

return context;

« Il chatReducer gestisce lo stato della chat, aggiornandolo in base alle azioni ricevute, come il carica-

mento della cronologia o 'aggiunta di nuovi messaggi. La sua struttura modulare e centralizzata
consente una gestione piu chiara e prevedibile dello stato, migliorando la manutenibilita e la scala-
bilita dell’applicazione. Separando la logica di aggiornamento dello stato dalla UI, il reducer facilita

Iimplementazione di nuove funzionalita senza compromettere la coerenza del sistema, rendendo

Papp piu facilmente estensibile e mantenibile nel tempo.

import { Message } from "@/types/Message";
import { ChatState } from "@/types/ChatState";
import { ChatAction } from "@/types/Action";

export const chatReducer = (state: ChatState, action: ChatAction): ChatState =>

{

switch (action.type) {
case "LOAD HISTORY START":
return {
...state,
loadingHistory: true,
errorHistory: 0,
hasMore: false,
b
case "LOAD HISTORY SUCCESS":

24 /72

SWEETEN

N> Specifica Tecnica

return {
...State,
messages: [...action.payload, ...state.messages],
loadingHistory: false,
errorHistory: 0,
hasMore: action.hasMore,

bE
case "LOAD HISTORY ERROR":
return {

...state,

loadingHistory: false,
errorHistory: action.error,
hasMore: false,

}
case "ADD MESSAGE START":
return {

...state,
messages: [...state.messages, { id: action.id, question:
action.question, answer: {} as Message, error: 0, loading: true, lastUpdated:
new Date().toISO0String() }1,
}
case "ADD MESSAGE SUCCESS":
const updatedMessagesSuccess = state.messages.map((msg) => {
if (msg.id === action.id) {
return {
...msg,
id: action.newid,
answer: action.answer,
loading: false,
error: 0O,
lastUpdated: action.lastUpdated,
T
}
return msg;
3
return {
...State,
messages: updatedMessagesSuccess,
3
case "ADD MESSAGE ERROR":
const updatedMessagesError = state.messages.map((msg) => {
if (msg.id === action.id) {
return {
...msg,
loading: false,
error: action.error,
i
}
return msg;
1}
return {
...state,
messages: updatedMessagesError,
}
case "SCROLL DOWN":
return {
...state,
hasToScroll: !state.hasToScroll,
+
default:
return state;

25/172

Specifica Tecnica
SWEETEN

}
};

5.2.4) Gestione e adattamento dei dati per la chat

Nel frontend di BuddyBot viene utilizzato il design pattern Adapter per gestire la comunicazione con
le API e adattare i dati in un formato utilizzabile dall’applicazione.

+ Il Adapter.ts implementa il pattern Adapter, che si occupa di adattare i dati ricevuti dalle API al
formato richiesto dall’applicazione. Gestisce le richieste per la cronologia della chat e per ottenere
le risposte alle domande, restituendo i dati come oggetti compatibili con il modello dell’app, come
QuestionAnswer e Message. Le funzioni requestHistory e requestAnswer si occupano rispettiva-
mente di recuperare la cronologia e le risposte, mentre i metodi privati all’interno dell’adapter
trasformano i dati ricevuti in un formato che ’app puo utilizzare facilmente.

import { QuestionAnswer } from "@/types/QuestionAnswer";
import { Message } from "@/types/Message";

import { Target } from "./Target";

import { Adaptee } from "./Adaptee";

import { generateld } from "@/utils/generateld";

import { CustomError } from "@/types/CustomError";

export class Adapter implements Target {
private adaptee: Adaptee;

constructor() {
this.adaptee = new Adaptee();

}

async requestHistory(id: string, offset: number): Promise<QuestionAnswer[]>

try {
const jsonResponse = await this.adaptee.fetchHistory(id, offset);
return this.adaptQuestionAnswerArray(jsonResponse);
} catch (error) {
if (error instanceof CustomError) throw error;
throw new CustomError(500, "SERVER", "Errore interno del server");
}
}
async requestAnswer(question: Message): Promise<{ answer: Message; id:
string; lastUpdated: string }> {
try {
const answer = await
this.adaptee.fetchQuestion(this.adaptMessageToJSON(question));
return {
answer: this.adaptMessage(answer.answer),
id: answer.id,
lastUpdated: answer.lastUpdated,
I
} catch (error) {
if (error instanceof CustomError) throw error;
throw new CustomError(501, "SERVER", "Errore interno del server");

}

}

private adaptMessage(data: any): Message {
return {

content: data.content,
timestamp: data.timestamp,

26/172

/\ ~Z

Specifica Tecnica
SWEETEN

42 Iy

43 I

44

45 private adaptQuestionAnswer(data: any): QuestionAnswer {

46 return {

47 id: data.id || generateld(),

48 question: this.adaptMessage(data.question),

49 answer: this.adaptMessage(data.answer),

50 error: 0,

51 loading: false,

52 lastUpdated: data.lastUpdated,

53 };

54 };

55

56 private adaptQuestionAnswerArray(dataArray: any[]): QuestionAnswer[] {
57 return dataArray.map(data => this.adaptQuestionAnswer(data));
58 3

59

60 private adaptMessageToJSON(question: Message): any {

61 return {

62 text: question.content,

63 date: question.timestamp,

64 };

65 } g

66 }

« Il Adaptee.ts Nasconde la complessita delle chiamate di rete e fornisce metodi semplificati per
ottenere la cronologia della chat e risposte alle domande, gestendo internamente i dettagli delle
comunicazioni con con I’API Gateway.

1 import { CustomError } from "@/types/CustomError";

2

3 export class Adaptee {

4 async fetchHistory(id: string, offset: number): Promise<any[]> {

5 const controller = new AbortController();

6 const timeoutId = setTimeout(() => controller.abort(), 25000);

7

8 try {

; const response = await fetch(http://${process.env.API GATEWAY ??
'localhost'}/api/get-storico?id=${id}&num=${offset}", {

10 method: "GET",

11 headers: {

12 "Content-Type": "application/json",

13 }I

14 signal: controller.signal,

15)

16 clearTimeout (timeoutId);

. if (response.status >= 500) throw new CustomError(500, "SERVER",
"Errore interno del server");

i, if (response.status >= 400) throw new CustomError (400,
"CONNESSIONE", "Errore interno del server");

. if (!response.ok) throw new CustomError(500, "SERVER", "Errore
interno del server");

20 return await response.json();

21 } catch (error) {

22 clearTimeout (timeoutId);

. if (error instanceof DOMException && error.name === "AbortError")

" throw new CustomError(408, "TIMEOUT", "Timeout della richiesta");

if (error instanceof TypeError && error.message === "Failed to

24

fetch") throw new CustomError(400, "CONNESSIONE", "Errore di connessione");

27172

Specifica Tecnica

SWEETEN

25
26
27
28
29
30
31
32
88
34

35

36
37
38
39
40
41
42
43

44

45

46

47
48
49

50

51

52
53
54
55
56

if (error instanceof CustomError) throw error;
throw new CustomError(500, "SERVER", "Errore interno del server");

}

async fetchQuestion(data: any): Promise<any> {
const controller = new AbortController();
const timeoutId = setTimeout(() => controller.abort(), 20000);

try {
const response = await fetch(http://${process.env.API GATEWAY ??
'localhost'}/api/get-risposta”, {
method: "POST",
headers: {
"Content-Type": "application/json",
}I
body: JSON.stringify(data),
signal: controller.signal,
b
clearTimeout (timeoutId);
if (response.status >= 500) throw new CustomError(501, "SERVER",
"Errore interno del server");
if (response.status >= 400) throw new CustomError(401,
"CONNESSIONE", "Errore interno del server");
if (!response.ok) throw new CustomError(501, "SERVER", "Errore
interno del server");
return await response.json();
} catch (error) {
clearTimeout (timeoutId);

if (error instanceof DOMException && error.name === "AbortError")
throw new CustomError(409, "TIMEOUT", "Timeout della richiesta");
if (error instanceof TypeError && error.message === "Failed to

fetch") throw new CustomError(401, "CONNESSIONE", "Errore di connessione");
if (error instanceof CustomError) throw error;
throw new CustomError(501, "SERVER", "Errore interno del server");

28 /72

Specifica Tecnica

5.3) Microservizio Api-Gateway

R tChatDTO
equestiha RegAnswerDTO |
-id: UUID
_______ - numcChat: int -text: siring
- date: Date

APIGatewayController

ChatDTO
"""" + getStorico(req: RequestChatDTC): ChatDTO*
__|-id:UuID + getRisposta(req: RegAnswerDTQ): ChatDTO
- question: Message I
- answer: Message
-lastUpdate: string
Message
Chat
- content: string Messaggio per Storico ™ i UUID
> -date:sting | T - i
9 Use Case _question Message e Messa%’glo ger Chatbof™ ___ ... 5| RegAnswerCmd
- answer: Message se Lase _text - string
+getStorico(req: RequestChatCMD): Chat* -lastUpdate: string
+getRisposta(req: RegAnswerCmd): Chat - date: Date
Service ChatMessage ProvwChat
Service StoricoMessage | oy e
Message - question: string
. - answer: string
RequestChatCmd - content: string - date: siring
- date: string
-id: UUID
- numChat: int
Storico Port
Storico Port ChatBot Port
+getStorico(req. RequestChatCMD: Chat™
+ postStorico{req| ProvwChat): Chat +getRisposta(req: RegAnswerCmd): ProvwChat
StoricoAdapter StoricoAdapter ChatbotAdapter
- SendMessage() - SendMessage() - SendMessage()
Scheduler Service FetchGithubCMD
v e
FetchJiraCMD + fetchUpdateGithub(req: FefchGithubCMD): Boolean; | - repoCMDList
+ fetchUpdatedira(req: FetchJiraCMD)- Boolean; RepoGithubCMD[]
- boardld: number prmmmm e + fetchUpdateConf(req: FetchConfluenceCMD). Boolean;
- lastUpdate: Date : + + getlastUpdate(): LastUpdateCMD - lastUpdate: Date
+ postUpdate(req: LastUpdateCMD): Boolean
¥
LastUpdateCMD FetchConfluenceCMD RepoGithubCMD
- LastFetch: string - lastUpdate: Date - owner: string
: - repoName: string
Storico Port Information - branch_name: sfring
Port

+ postUpdate(req: LastFetchCMD): Boolean
+ getlLastUpdate(): LastUpdateCMD

+ fetchUpdateGithub(req: FetchGithubCMD): Boolean;
+fetchUpdateJira(req: FetchJiraCMD): Boolean;

+ fetchUpdateConfireq: Fet]hCunﬂuenceCMD}. Boolean;
InformatidnAdapter

- SendMessage()

StoricoAdapter

- SendMessage()

Figura 27: Diagramma UML del microservizio Api-Gateway

Il microservizio API Gateway svolge un ruolo cruciale nell’architettura di , fungendo da

punto di ingresso centralizzato per tutte le richieste provenienti dal e indirizzandole verso

i microservizi appropriati, garantendo il routing delle richieste e la gestione delle risposte.

Come per gli altri microservizi, anche 'API Gateway é stato progettato secondo i principi
dell’architettura esagonale, al fine di garantire una netta separazione tra la logica di business e
le applicazioni esterne. L’obiettivo € quello di mantenere il sistema flessibile, testabile e facilmente
manutenibile.

In particolare, 'API Gateway interagisce con i microservizi tramite porte e adattatori dedicati,

utilizzando per comunicare con il e per la messaggistica con gli

29/172

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#buddybot
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#front-end
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#rest-api
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#front-end
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#rabbitmq

SWEETEN

Specifica Tecnica

altri microservizi. Questo approccio consente di mantenere I’API Gateway completamente agnostico
rispetto ai dettagli di implementazione dei microservizi, favorendo una maggiore scalabilita nel futuro.

Compiti del’API gateway:
« comunicazione attraverso con il front-end (@Get('get-storico') e @Post('get-
risposta'));
« instradamento delle richieste ai microservizi appropriati (Storico, ChatBot e Information):
» recupero di nuova risposta dal servizio di Chatbot;
» recupero dello storico dal servizio di Storico;
» scheduling del fetch delle informazioni nel microservizio «Information».

5.3.1) Risposta Use-Case:

L’endpoint “get-risposta” riceve dal una richiesta @Post('get-risposta') contenente il
corpo «(text)» e la data «(date)» della domanda,

async getRisposta(@Body('text') text: string, @Body('timestamp') timestamp:
string): Promise<ChatDTO>

all’interno di un

export class RegAnswerDTO {
constructor(
public readonly text: string,
public readonly date: string
) {}
}

e restituisce un oggetto «ChatDTO» contenente la risposta dalla domanda posta.

import { MessageDto } from "./message.dto";
export class ChatDTO {
constructor(
public readonly id: string,
public readonly question: MessageDto,
public readonly answer: MessageDto,
public readonly lastUpdate: string,
) {}
}

export class MessageDto {
constructor(
public readonly content: string,
public readonly timestamp: string,
) {}
}

Prima pero la richiesta viene mandata al microservizio di «Chatbot» che restituisce una risposta

export class ProvChat {
constructor(
public readonly question: string,
public readonly answer: string,
public readonly timestamp: string,
) {}
}

30/72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#rest-api
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#front-end

A
Specifica Tecnica

SWEETEN

contenente la domanda fatta e la risposta che é stata generata.

Prima di essere passata verso il front-end, «ProvChat» viene inviata al microservizio «Storico»
postStorico(chat: ProvChat): Promise<Chat>;

, il quale salva e assegna un UUID alla nuova glossary («Chat»), oltre alla data del glossary («Fetch»),
in “lastUpdate” a cui appartengono le informazioni con cui € stata generata. Lo «Storico» ritorna un
oggetto «Chat» completo che quindi viene passato, attraverso I’ al front-end per essere
visualizzato.

5.3.2) Storico Use-Case:

Usato per caricare le chat salvate nel database del microservizio «Storico» nel front-end. L’endpoint
“get-storico” riceve una richiesta all’interno di

export class RequestChatDTO {
constructor(
public readonly id: string,
public readonly numChat: number

) {}
}

con («id») UUID dell’ultima chat visualizzabile nell’interfaccia grafica front-end e un («numChat»),
numero di chat(domanda + risposta) antecedenti a questa da caricare insieme.

async getStorico(@Query('id') id?: string,@Query('num') numChat?: number):
Promise<ChatDTO[]>

e restituisce al front-end un array di «Chat» invece che una sola. Se il sistema € stato appena avviato,
‘e num = 1 che restituisce 1’ultima chat in ordine cronologico

<

viene mandata una richiesta con id =
salvata nel database.

Le «Chat» recuperate con
getStorico(req: RequestChatCMD): Promise<Chat[]>;

vengono mandate al front-end con questo formato glossary («Json»)

{
"id": "ID DELLA CHAT",
"question": {
"content": "Domanda"
"timestamp": "DATA DOMANDA"
3
"answer": {
"content": "Risposta",
"timestamp": "DATA RISPOSTA"
}
}

31/72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#endpoint

\ . .
Specifica Tecnica
SWEETEN

dove vengono suddivise e visualizzate in ordine cronologico .

5.3.3) Scheduling del Fetch:

Inoltre Api-Gateway si occupa anche dello scheduling del fetch delle informazioni nel microservizio
di «Information» e del passaggio della data in cui viene effettuato al microservizio di «Storico» con

postUpdate(LastFetch:string): Promise<Boolean>;

per essere salvata e poi fornita all’utente all’interno della glossary («Chat») che riceve indicando a
quando risalgono le informazioni usate per formulare la risposta.

Prima pero viene fatto un check per controllare se esiste una data di nel database con
getLastUpdate(): Promise<LastUpdateCMD>;

, se non esiste significa che non ¢ stato ancora fatto nessun fetch e in questo caso viene effettuato
un fetch completo che recupera tutte le informazioni. In questo caso noi abbiamo messo la data di
qualche mese fa per facilitare il test siccome il fetch, soprattutto di github, richiede tempo, ma se non
si mettesse una data viene fatto il fetch di tutto.

Nel caso invece esista questa viene usata come data di partenza.

Per gestire lo scheduling viene usato @Cron della libreria @nestjs/schedule(in questo caso é stato
impostato per essere effettuato ogni 5 minuti su richiesta dell’azienda). Oltre alla data vengono passati
anche una serie di oggetti che contengono dati sulle repository che vengono usati dal microservizio di
«Information» per fare il fetch delle informazioni.

export class TasksService implements OnModuleInit {
private readonly logger = new Logger(TasksService.name);

constructor(
@Inject('InfoPort') private readonly infoPort: InfoPort,
@Inject('StoricoPort') private readonly storicoPort: StoricoPort,

) {}

@Cron('0 */5 * * * xt)

async handleCron() {
this.logger.debug('Esecuzione FETCH ogni TOT (ogni 5 min)...');
await this.runFetch();

}

private async runFetch() {

try {
this.logger.debug('Richiesta della data di ultimo FETCH (SERVICE)');
const isoDateString = await this.storicoPort.getlLastUpdate();

let DataFetch: Date;
if (!isoDateString?.LastFetch) {

DataFetch = new Date();
DataFetch.setMonth(DataFetch.getMonth() - 9);
this.logger.warn(Nessuna data FETCH (SERVICE) precedente. Uso data di
fallback: ${DataFetch});
} else {
DataFetch = new Date(isoDateString.LastFetch);

32/72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#fetch

@l . .
, Specifica Tecnica
SWEETEN

this.logger.debug(FETCH (SERVICE) da data salvata trovata: ${DataFetch}

}

const boardId = 1;
const jiraCmd new FetchJiraCMD(boardId, DataFetch);
const confCmd new FetchConfluenceCMD(DataFetch);

const owner = process.env.GITHUB OWNER || 'SweeTenTeam';
const repoName = process.env.GITHUB REPO || 'BuddyBot';
const branch = process.env.GITHUB BRANCH || 'develop';

const repoCMD = new RepoGithubCMD(owner, repoName, branch);
const githubCmd = new FetchGithubCMD([repoCMD], DataFetch);

const resultFetchJira = await this.infoPort.fetchUpdateJdira(jiraCmd);
const resultFetchConf = await this.infoPort.fetchUpdateConf(confCmd);
const resultFetchGithub = await

this.infoPort.fetchUpdateGithub(githubCmd);

if (resultFetchlira && resultFetchGithub && resultFetchConf) {
this.logger.log(FETCH (SERVICE) completato con successo.);

const NewDataFetch = new Date();
const lastUpdateCmd = new LastUpdateCMD(NewDataFetch.toIS0String());
const result = await this.storicoPort.postUpdate(lastUpdateCmd);

this.logger.debug(Salvataggio data fetch riuscito: ${result}’);
} else {
this.logger.error("FETCH (SERVICE) fallito: almeno uno dei servizi ha
dato errore.’);
}
} catch (error) {
this.logger.error('Errore nel FETCH (SERVICE) iniziale', error);
}
}
}

Con “FetchGithubCMD” che contiene le informazioni della repo a cui fare riferimento, questi sono
salvati in un file “.env” per essere facilmente modificabili.

import { RepoGithubCMD } from "./RepoGithubCMD.js";
export class FetchGithubCMD {
constructor (
public readonly repoDTOList: RepoGithubCMD[],
public readonly lastUpdate: Date
){}
}
//CHE USA
export class RepoGithubCMD{
constructor(
public readonly owner: string,
public readonly repoName: string,
public readonly branch name: string

) {}

Sono state messe 3 diverse funzioni per il fetch , una per ogni fonte, per rendere il codice facilmente
espandibile in futuro, nel caso si vogliano aggiungere nuovi fonti bastera aggiungere la loro funzione e
creare il loro oggetto con i dati necessari. Ma anche nel caso si voglia dare tempi di scheduling differenti
ad ogni fonte e salvare nel database date di diverse per ciascuna.

33/72

ol

©) Specifica Tecnica
SWEETEN

export interface InfoPort {
fetchUpdateGithub(req: FetchGithubCMD): Promise<Boolean>;
fetchUpdatelira(req: FetchJiraCMD): Promise<Boolean>;
fetchUpdateConf(req: FetchConfluenceCMD): Promise<Boolean>;

}

5.4) Microservizio Chatbot

Chat ElaborazioneService
-guestion: string -lImPort: LLMPort
-answer: string -vectorDbPort: VectorDbPort
+getQuestion(): string +getAnswer(req: RegAnswerCmd): Chat ElaborazioneUseCase
+getAnswer(): string
7 +getAnswer(req: RegAnswerCmd): Chat
ReqAnswerCmd ChatController
:(d‘:‘;te Sglaﬂtg -elaborazioneUseCase: ElaborazioneUseCase
K — ReqAnswerDTO
P - +getAnswer(gueryData: ReqAnswerDTQ): ChatDTQ e
+getDate(): Date " e Ds‘g
)
0
LLMPort ' VectorDbPort ChatDTO
‘ +generateAnswer(req: RegAnswerCmd Jinfo: Information®): Chat B +searchVectorDb(req: RegAnswerCmd): Information* +question: string
., H H +answer sfring
+date: Date
GrogAdapter VectorDbAdapter
-grog: ChatGroq -client: VectorDbClient
+generateAnswer(req: RegAnswerCmd, info: Information®): Chat +searchVectorDb(req: RegAnswerCmd): Information*
Information \
h -content: string VectorDbClient
e RREEEEEETTEEEEEs,; o -metadata: Metadata : lent: ClientProny
+getContent(): strin - n
ChatGrog +getMetadalg[) Me%sdala +sendMessage(pattern: string, data: any): any
Metadata
-origin: string
-type: string

-originiD: string

+getOrigin(): string
+getType(): string
+getOriginID(): string

Figura 28: UML ChatBot

Il microservizio Chatbot rappresenta una componente cruciale all’interno dell’architettura di Buddy-
Botg, essendo responsabile dell’elaborazione delle domande degli utenti e della generazione di risposte
pertinenti. Questo microservizio é progettato secondo i principi dell’architettura esagonale garantendo
una netta separazione tra la logica di business e i dettagli implementativi.

La sua funzione principale € quella di ricevere una domanda dall’utente, arricchirla con informazioni
contestuali recuperate dal microservizio Informazioni, e utilizzare queste informazioni per generare
una risposta accurata e rilevante attraverso un modello di linguaggio esterno (LLM).

5.4.1) Architettura e Componenti

L’architettura del microservizio € strutturata in diversi layer, ciascuno con responsabilita ben definite:

5.4.1.1) Domain Layer

Il Domain Layer contiene le entita core e i value objects che rappresentano i concetti fondamentali del

dominio, indipendenti da qualsiasi tecnologia specifica:

34/72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#buddybot
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#buddybot

Specifica Tecnica

- Entita:
» Chat: Rappresenta una conversazione completa con domanda e risposta
» Information: Contiene informazioni contestuali recuperate dal database vettoriale
» Metadata: Mantiene i metadati associati alle informazioni (origine, tipo, ID)

« Value Objects:
» RegAnswerCmd: Command object che incapsula la richiesta dell’utente

5.4.1.2) Application Layer

L’Application Layer coordina il flusso di dati e implementa i casi d’uso dell’applicazione, orchestrando
il lavoro delle entita del dominio:

« Use Cases (Interfaces):
» ElaborazioneUseCase: Definisce il contratto per I’elaborazione delle domande e la generazione di
risposte

« Ports (Interfaces):
» LLMPort: Interfaccia che definisce le operazioni per interagire con modelli di linguaggio esterni
» VectorDbPort: Interfaccia che definisce le operazioni per recuperare informazioni dal database
vettoriale

« Services:
» ElaborazioneService: Implementazione concreta di ElaborazioneUseCase che coordina
Pinterazione tra il recupero delle informazioni contestuali e la generazione delle risposte attraverso

il modello di linguaggio

Questo layer implementa la logica applicativa senza dipendere direttamente da meccanismi specifici
di persistenza o comunicazione, utilizzando le interfacce (ports) per interagire con il mondo esterno.

5.4.1.3) Adapters Layer

L’Adapters Layer traduce le interazioni tra il core dell’applicazione e il mondo esterno, gestendo le
conversioni di formato e protocollo:

« Adapters In:
» ChatController: Riceve le richieste tramite RabbitMQ, le converte in command objects
(RegAnswerCmd) e le passa al caso d’uso appropriato (ElaborazioneUseCase)

« Adapters Out:
» GrogAdapter: Implementa LLMPort per interagire con il modello di linguaggio , convertendo
i formati di dominio in richieste API specifiche
» VectorDbAdapter: Implementa VectorDbPort per comunicare con il microservizio DB Vettoriale,
gestendo la serializzazione e deserializzazione dei messaggi RabbitMQ

- Data Transfer Objects (DTOs):
» RegAnswerDTO: Oggetto di trasferimento dati per ricevere le richieste in ingresso dal client
» ChatDTO0: Oggetto di trasferimento dati per le risposte (definito ma non utilizzato
nell'implementazione attuale)

Gli adapter isolano il core dell’applicazione dai dettagli di implementazione delle tecnologie esterne,
consentendo di sostituire facilmente tali tecnologie senza modificare la logica di business.

5.4.1.4) Infrastructure Layer

L’'Infrastructure Layer fornisce implementazioni concrete per servizi esterni, configurazioni e mecca-
nismi di comunicazione:

35/72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#groq

Specifica Tecnica

+ Clients:
» VectorDbClient: Client che gestisce la comunicazione con il microservizio DB Vettoriale tramite
RabbitMQ, incapsulando i dettagli di connessione e serializzazione
» ChatGroq: Client di terze parti per I'interazione con I’API di , configurato per utilizzare il
modello di linguaggio «qwen-2.5-32b»

» Configuration:
» ConfigModule: Modulo di Nest]S che gestisce il caricamento e 'accesso alle variabili d’ambiente
» AppModule: Modulo principale dell’applicazione che configura le dipendenze, i provider e i con-
troller

+ Communication:
» rabbitMQConfig: Configurazione per la connessione a RabbitMQ, definendo code e opzioni

Questo layer si concentra esclusivamente sui dettagli tecnici e sulle implementazioni specifiche delle
tecnologie, mantenendo queste preoccupazioni separate dalla logica di business.

5.4.2) Flusso Principale di Elaborazione

11 flusso principale per la generazione di una risposta segue questi passaggi:

1. Ricezione della richiesta
« Un messaggio contenente la domanda dell’utente viene ricevuto tramite RabbitMQ
« Il ChatController gestisce il messaggio e crea un comando RegAnswerCmd

2. Ricerca di informazioni contestuali
« Il servizio ElaborazioneService utilizza VectorDbPort per cercare informazioni rilevanti nel

« La richiesta viene inoltrata al microservizio Informazioni tramite RabbitMQ

3. Generazione della risposta
« Le informazioni contestuali recuperate vengono combinate con la domanda originale
« 1l servizio utilizza LLMPort per interagire con un modello di linguaggio ()
« Larisposta generata viene formattata come oggetto Chat

36/ 72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#groq
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#database-vettoriale
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#groq

-l . .
3 Specifica Tecnica
SWEE

4. Restituzione della risposta
« Il risultato viene restituito al chiamante (API Gateway)

5.4.3) Componenti Principali
5.4.3.1) Controllers

+ ChatController: Punto di ingresso per le richieste RabbitMQ. Gestisce il pattern di messaggistica
«get-answer» e converte i dati di richiesta (ReqAnswerDTO0) in comandi di dominio (RegAnswerCmd).
5.4.3.2) Use Cases e Ports

+ ElaborazioneUseCase: Interfaccia che definisce il contratto per il caso d’uso principale di genera-
zione di risposte.

LLMPort: Interfaccia che definisce il contratto per I'interazione con modelli di linguaggio.

VectorDbPort: Interfaccia che definisce il contratto per I'interazione con il

5.4.3.3) Services

» ElaborazioneService: Implementazione principale del caso d’uso di elaborazione delle domande.
Gestisce il flusso complessivo dell’elaborazione della richiesta:
1. Ricerca di informazioni contestuali rilevanti tramite VectorDbPort
2. Invio della domanda e del contesto al modello di linguaggio tramite LLMPort
3. Restituzione della risposta generata

@Injectable()
export class ElaborazioneService implements ElaborazioneUseCase {
constructor(
@Inject(LLM PORT)
private readonly 1lmPort: LLMPort,
@Inject(VECTOR DB_PORT)
private readonly vectorDbPort: VectorDbPort,

) {}

async getAnswer(req: RegAnswerCmd): Promise<Chat> {
// 1. Ricerca del contesto rilevante nel database vettoriale tramite
RabbitMQ
const relevantContext = await this.vectorDbPort.searchVectorDb(req);
console.log(Retrieved ${relevantContext.length} relevant documents: °);

// 2. Genera la risposta utilizzando 1'LLM con il contesto recuperato
const chat = await this.llmPort.generateAnswer(req, relevantContext);

return chat;

37/172

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#database-vettoriale

SWEETEN

Specifica Tecnica

5.4.3.4) Adapters

+ GroqAdapter: Implementa LLMPort per interagire con il modello di linguaggio Grogqe. Utilizza
LangChaing per gestire i prompt e il parsing delle risposte.

@Injectable()
export class GrogAdapter implements LLMPort {
constructor(private readonly groq: ChatGroq) {

}

async generateAnswer(req: RegAnswerCmd, info: Information[]): Promise<Chat> {
const prompt = PromptTemplate.fromTemplate(Answer the question based only
on the following context: {context} Question: {question}’);
const ragChain = await createStuffDocumentsChain({
1lm: this.groq,
prompt,
outputParser: new StringOutputParser(),
1)
const documents: Document[] = [];
for(const information of info){
documents.push({
pageContent: information.content,
metadata: {
‘origin': information.metadata.origin,
"type': information.metadata.type,
‘originId': information.metadata.originID

3

}

const response = await ragChain.invoke({
question: req.getText(),
context: documents

});

return new Chat(req.getText(), response);

38/72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#groq
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#langchain

SWEETEN

Specifica Tecnica

VectorDbAdapter: Implementa VectorDbPort per interagire con il microservizio DB Vettoriale
tramite RabbitMQ.

@Injectable()
export class VectorDbAdapter implements VectorDbPort {
constructor(private client: VectorDbClient) {}

{query:

async searchVectorDb(req: RegAnswerCmd): Promise<Information[]> {

let result: Information[] = [1;

const res = await this.client.sendMessage("retrieve.information",

req.getText()});

for(const r of JSON.parse(JSON.stringify(res))) {

let i = new Information(
r.content,

new Metadata(r.metadata.origin,

r.metadata.originID)

);
result.push(i);

}

return result;

5.4.3.5) Entita e Value Objects

r.metadata. type,

« Chat: Rappresenta una conversazione completa, contenente sia la domanda che la risposta.

ex

}

port class Chat {
private question: string;
private answer: string;

constructor(question: string, answer: string) {

this.question = question;
this.answer = answer;

}

getQuestion(): string {
return this.question;

}

getAnswer(): string {
return this.answer;

}

39/72

\
SWEETE!

A
4

Specifica Tecnica

« Information: Rappresenta le informazioni contestuali recuperate dal

ex

}

« Metadata: Contiene metadati associati alle informazioni contestuali.

ex

}

port class Information {

constructor(
public readonly content: string,
public readonly metadata: Metadata,

) {}

getContent(): string {
return this.content;

}

getMetadata(): Metadata {
return this.metadata;

}

port class Metadata {

constructor(
public readonly origin: string,
public readonly type: string,
public readonly originID: string,

) {}

getOrigin(): string {
return this.origin;

}

getType(): string {
return this.type;

}

getOriginID(): string {
return this.originID;

}

5.4.4) Integrazione con LangChain e Groq

Il microservizio utilizza

linguaggio. In particolare:

come framework per semplificare I'interazione con i modelli di

1. Costruzione dei Prompt: Utilizza PromptTemplate per strutturare i prompt con un formato

coerente.
2. Catene di Elaborazione: Utilizza createStuffDocumentsChain per combinare documenti di con-
testo con la domanda dell’utente.
3. Parsing delle Risposte: Utilizza StringOutputParser per estrarre il testo dalla risposta del

modello.

Per I'integrazione con il modello

parametri:
« Limite di token: 6000
« Numero massimo di tentativi: 2

40 /72

, il servizio utilizza il modello «qwen-2.5-32b» con i seguenti

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#database-vettoriale
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#langchain
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#groq

Pl | |
Specifica Tecnica
SWEETEN

{
provide: ChatGroq,
useFactory: () => {
return new ChatGroq({
apiKey: process.env.GROQ API KEY,
model: "qwen-2.5-32b",
maxTokens: 6000,
maxRetries: 2,
1)
}I
}

5.4.5) Comunicazione con Altri Microservizi

La comunicazione con altri microservizi avviene principalmente tramite RabbitMQ:

1. Ricezione di Richieste dal’API Gateway:
« Coda: «chatbot-queue»
« Pattern di messaggistica: «get-answer»
« Payload: RegAnswerDTO contenente il testo della domanda e il timestamp

2. Invio di Richieste al DB Vettoriale:
« Coda: «information-queue»
« Pattern di messaggistica: «retrieve.information»
« Payload: Oggetto contenente la query da cercare

La configurazione RabbitMQ é definita nel file main. ts:

const app = await NestFactory.createMicroservice<MicroserviceOptions>(
AppModule,
{
transport: Transport.RMQ,
options: {
urls: [process.env.RABBITMQ URL || ‘'amqp://rabbitmq'],
queue: 'chatbot-queue',
queueOptions: {
durable: true,
e
}I
}I
)

41/72

Specifica Tecnica

5.4.6) Configurazione e Ambiente

Il microservizio utilizza variabili d’ambiente per gestire le configurazioni:

« RABBITMQ URL: URL del server RabbitMQ (default: amqp://rabbitmq)
« GROQ_API_KEY: Chiave API per I’accesso al servizio Groq

La configurazione dell’ambiente ¢ gestita tramite il modulo ConfigModule di Nest]S, che carica auto-

maticamente le variabili d’ambiente all’avvio dell’applicazione.

5.4.7) Conclusione

Il microservizio Chatbot rappresenta il cuore intelligente di , responsabile della generazio-
ne di risposte accurate e contestualmente rilevanti. La sua architettura esagonale garantisce una chiara
separazione delle responsabilita, facilitando la manutenzione e l'evoluzione del sistema nel tempo.
L’integrazione con e fornisce capacita avanzate di elaborazione del linguaggio
naturale, mentre la comunicazione tramite RabbitMQ assicura un’integrazione efficiente con gli altri

componenti del sistema.

42 /72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#buddybot
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#langchain
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#groq

SWEETEN

Specifica Tecnica

5.5) Microservizio Storico Chat

InsertRequestDTO

InsertChatController

-gquestion: string
-timestamp: string
-answer: string

InsertChatCmd

-==7="1 +insertChat(req: CreateChatDTO): ChatDTO

InsertChatUseCase

'
H

v

ChatDTO

-id: UUID

-guestion: string |g.-=-----=""

-timestamp: string
-answer: string

A

+insertChat(cmd: InsertChatCmd): Chat

InsertChatService

InsertChatPort

-question: MessageDTO
-answer: MessageDTO
-lastFetch: string

Chat

-id: UUID
-question: Message
-answer: Message

-lastFetch: string -

+insertChat(cmd: InsertChatCmd): Chat

InsertChatAdapter

FetchHistoryController

FetchRequestDTO

+fetchStoricoChat(req: FetchRequestDTQ): ChatDTO*

-lastChatld: UUID
-numChat: number

O

FetchHistoryUseCase ... _____ |

+fetchStoricoChat(cmd: FetchStoricoCmd): Chat*

—

FetchStoricoCmd

""" 2| -lastChatld: UUID
-numChat: number

FetchHistoryPort

I

1 4
FetchHistoryAdapter
1

+fetchStoricoChat(cmd: FetchStoricoCmd): Chat*

/\

ChatRepository

+fetchStoricoChat(lastChat: UUID, numChat: number): ChatEntity™
+insertChat(question: string, answer: string, date: Date): ChatEntity
+insertLastRetrieval(LastFetch: string): boolean

+fetchLastUpdate(): LastFetchEntity

LastFetchEntity

43 /72

R

LastUpdateCmd
-LastFetch: string

InsertLastUpdateController

FetchLastUpdateController

+insertLastRetrieval(data: LastUpdateDTO): boolean

+fetchLastUpdate(): LastUpdateDTO

LastUpdateDTO

-LastFetch: string

InsertLastUpdateUseCase

+insertLastRetrieval(data: LastUpdateCmd): boolean

InsertLastUpdatePort

FetchLastUpdateUseCase
+fetchLastUpdate(): LastUpdate

LastUpdate ‘ FetchLastUpdateService ‘

-LastFetch: string

+insertLastRetrieval(data: LastUpdateCmd): boolean

InsertLastUpdateAdapter

-

FetchLastUpdatePort
+fetchLastUpdate(): LastUpdate

FetchLastUpdateAdapter

Figura 29: Progettazione del Microservizio Storico Chat

Specifica Tecnica

Il microservizio dello Storico riveste un ruolo fondamentale per il corretto funzionamento di

: esso si occupa della gestione delle interazioni con il database relazionale \
prelevando e inserendo dati relativi alle conversazioni in modo affidabile. Come per gli altri micro-
servizi, anche questo é stato progettato secondo i principi dell’architettura esagonale, al fine di
garantire una netta separazione tra la logica di business e i dettagli di implementazione tecnologica.
In particolare, I'interazione con PostgreSQL é delegata a un repository dedicato (ChatRepository),
che utilizza per accesso e la gestione delle entita persistite. La logica applicativa, invece,
accede ai dati attraverso alle Port & Adapter di output, fungendo da mediatori con il repository. Questo
approccio consente di mantenere I’«application» completamente agnostica rispetto alla tecnologia di
persistenza, favorendo una maggiore manutenibilita, testabilita e flessibilita.

5.5.1) Quattro casi d’'uso

Questo microservizio é stato progettato per 'esecuzione di 4 principali operazioni.
« Recupero dello Storico della Chat

» L’obiettivo & quello di recuperare dal database una specifica quantita di messaggi richiesti
 Inserimento di nuovi messaggi

» L’obiettivo é quello di inserire nuovi messaggi presenti nella nel database, in maniera tale da
permettere successivi recuperi
+ Inserimento dell’ultima data di recupero informazioni ()
» 1l sistema esegue un recupero periodico dei dati provenienti da X X .In

questo microservizio si vuole memorizzare I'ultima data di recupero nel database (sovrascrivendo
quella precedente se presente), cosi da poterla restituire insieme ai dati della chat.
« Ottenimento della data di ultimo recupero / aggiornamento informazioni
» L’obiettivo é quello di recuperare correttamente nella tabella dedicata I'unico record presente
rappresentante la data in cui e stato eseguito ['ultimo

Nelle prossime sezioni verranno riepilogati i 4 flussi per le rispettive operazioni.

5.5.2) Recupero dello Storico della Chat

» FetchRequestDTO: rappresenta il Data Transfer Object utilizzato per contenere la richiesta di recu-
pero dello storico. Include due parametri, ovvero:

» ID: identificativo che rappresenta I'ultima Chat (coppia di messaggi, come verra spiegato nella spe-
cifica classe) precedentemente caricata. Questo valore viene utilizzato come punto di riferimento
cronologico per effettuare il fetch dei messaggi successivi, seguendo un ordinamento decrescente
(dal piu recente al meno recente);

» numChat: quantita delle chat che si vogliono recuperare nella medesima operazione.

I1 DTO in questo caso € essenziale per permettere un corretto trasferimento dei dati tra microservizi
e livelli differenti.

 FetchHistoryController: corrisponde al consumer, rimane in ascolto nella coda “fetch_queue”
e in ricezione ottiene un messaggio contenente una richiesta presente in un oggetto DTO -
FetchRequestDTO. Il controller si occupa di trasformare il DTO in un oggetto FetchHistoryCmd,
delegando I’elaborazione allo UseCase (interface) e alla sua corrispettiva implementazione, ossia al
Service. Una volta che quest’ultimo tornera 'oggetto di dominio, il controller lo convertira nuova-
mente in ChatDTO affinché vengano rispettati i principi del modello esagonale.

» FetchHistoryCmd: command object creato a partire dal DTO, formalizza e incapsula i parametri
effettivi della richiesta. Utile a separare i dati provenienti dall’esterno dal formato atteso dalla logica
di business, garantendo isolamento tra livelli. I parametri presenti all’interno di tale richiesta sono
sempre “ID” e “numChat”, citati e spiegati in precedenza per il FetchRequestDTO.

44 /72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#buddybot
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#postgresql
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#typeorm
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#ui
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#retrieval-periodico
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#jira
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#github
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#confluence
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#retrieval-periodico

Pl | |
Specifica Tecnica
SWEETEN

FetchHistoryUseCase: interfaccia che rappresenta la porta di ingresso della logica applicativa per
il recupero dello storico. Utile per garantire disaccopiamento tra Controller e Service. Nel metodo
esposto per il recupero viene passsato FetchHistoryCmd come input, mentre in output si ritorna
l'oggetto di dominio, ossia Chat.

FetchHistoryService: implementazione concreta dell’interfaccia precedente, € la classe principale
della business logic. Non interagisce direttamente con il database, il suo ruolo € quello di orchestrare
un corretto recupero dello storico presente in database. In linea con i principi dell’architettura
esagonale, questa classe consente di mantenere la logica di business indipendente dall’infrastruttura.

FetchHistoryPort: questa interfaccia rappresenta la porta di uscita (output port) dal punto di vista
della logica applicativa. Astrae il meccanismo con cui vengono recuperati i dati dal livello di persi-
stenza.

FetchHistoryAdapter: implementazione concreta dell’interfaccia spiegata in precedenza, funge da
punto di collegamento tra logica applicativa al sistema di persistenza ma non accede al database. Il
suo primo compito & quello di formalizzare la richiesta ricevuta (FetchHistoryCmd) in un formato
adatto al repository, estraendo e passando in modo esplicito i parametri (id, numChat) necessari
alla query. Dopodicheé riceve i dati persistiti (ChatEntity), li trasforma in dati di dominio (Chat) e li
restituisce al Service.

ChatRepository: E la componente incaricata dell’accesso diretto a PostgreSQL, utilizzando
per la gestione delle entita e delle query. Fornisce il metodo fetchStoricoChat, che implementa
la logica di recupero dei messaggi in due scenari distinti:
» nel caso di primo accesso a BuddyBot (quando non e fornito un id), vengono recuperate le
conversazioni piu recenti, ordinate per data in modo decrescente;
» nei casi successivi, viene prima identificata la chat corrispondente all’id fornito e, a partire dalla
sua data, vengono recuperate le conversazioni precedenti.

A seguire, viene inserito il metodo «fetchStoricoChat()» presente in questa classe.

export class ChatRepository {
constructor(
@InjectRepository(ChatEntity) //tabella db della chat
private readonly chatRepo: Repository<ChatEntity>,

@InjectRepository(LastUpdateEntity) //tabella db con unico record data

ultimo retrieval info
private readonly lastUpdateRepo: Repository<LastUpdateEntity>,

) {}

async fetchStoricoChat(lastChatId: string, numChat?: number):
Promise<ChatEntity[]> {

try {
const take = numChat ? numChat : 5;

//caso senza ID (quindi primo accesso)
if (!lastChatId) {
const lastChats = await this.chatRepo.find({
order: { answerDate: 'DESC' },
take,
1)

return lastChats.slice().reverse()

}

45/72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#typeorm
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#typeorm

SWEETEN

N> Specifica Tecnica

//caso con ID, trovo chat corrispondente e prendo le precedenti (ragionando
in ordine cronologico)
const lastChat = await this.chatRepo.findOne({
where: { id: lastChatId },
3

if (!lastChat) {
throw new Error('Last chat ID not found');

}
const previousChats = await this.chatRepo.find({
where: {
answerDate: LessThan(lastChat.answerDate),
}I
order: { answerDate: 'DESC' },
take: take,
1)

const combo = previousChats.slice().reverse()
return combo;

} catch (error) {
console.error('Error during History-fetch:', error);
throw new Error('Error during History-fetch');

}
}
- Chat: rappresenta entita di dominio; una singola Chat rappresenta una coppia di messaggi, ossia
include una domanda e la rispettiva risposta. La conversazione con , quindi, si compone
di Chats.

export class Chat {
constructor(
public readonly id: string,
public readonly question: Message,
public readonly answer: Message,
public readonly lastFetch: string
) {}

+ ChatDTO: data transfer object di uscita, costruito dal controller a partire dagli oggetti Chat.

+ Message: rappresenta l'entita di dominio che incapsula le informazioni relative a un singolo messag-
gio all’interno di una Chat.

export class MessageDTO {
constructor(
public readonly content: string,
public readonly timestamp: string,
) {}
}

+ MessageDTO: data transfer object utilizzato per esporre i singoli messaggi all’esterno.

+ ChatEntity: rappresenta la mappatura dell’entita «Chat» nel database PostgreSQL, gestita tramite
. E’ associata a una tabella generata automaticamente e viene utilizzata per persistere
ogni conversazione tra 'utente e BuddyBot. I principali campi della classe sono:
» id: chiave primaria generata in formato UUID;

46 /72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#buddybot
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#typeorm

Specifica Tecnica

» question: il contenuto testuale della domanda posta dall’utente;

» questionDate: timestamp associato alla domanda. Il valore di questo campo viene esplicitamente
passato tramite la richiesta di inserimento e conservato cosi com’e nel database;

» answer: il contenuto testuale della risposta generata;

» answerDate: a differenza della questionDate, € un timestamp generato automaticamente al
momento dell’'inserimento nel database. E gestito da TypeORM tramite il decoratore @CreateDa-
teColumn, che assegna il valore corrente (now) senza necessita di specificarlo a livello applicativo.

» lastFetch: rappresenta la data dell’ultimo « » eseguito, dando all’utilizzatore
la possibilita di capire quanto recenti (o meno) sono i dati elaborati dal chatbot.

import { Column, CreateDateColumn, Entity, PrimaryGeneratedColumn } from
“typeorm";

@Entity()

export class ChatEntity {
@PrimaryGeneratedColumn('uuid') //primaryKey
id: string;

@Column()
question: string;

@Column({ type: 'timestamptz' })
questionDate: Date;

@Column()
answer: string;

@CreateDateColumn({ type: 'timestamptz', default: () =>
"CURRENT _TIMESTAMP' })
answerDate: Date = new Date();

@Column()
lastFetch: string;

5.5.3) Inserimento di nuovi messaggi

« InsertRequestDTO: rappresenta il Data Transfer Object utilizzato per contenere la richiesta di
inserimento nel database di una nuova Chat (coppia di messaggi). Include tre parametri, ovvero:
» question: una stringa contenente la domanda posta;
» timestamp: una stringa contenente la data+orario dell’invio della domanda
- si osservi che viene passata solamente quella domanda poiché quella della risposta viene
decretata una volta avvenuto 'inserimento in database;
» answer: una stringa contenente la risposta generata dal chatbot.

II DTO in questo caso & essenziale per permettere un corretto traferimento dei dati tra microservizi
e livelli differenti.

« InsertChatController: corrisponde al consumer, rimane in ascolto nella coda “chat_message”
e in ricezione ottiene un messaggio contenente una richiesta presente in un oggetto DTO -
InsertRequestDTO. Il controller si occupa di trasformare il DTO in un oggetto InsertChatCmd,
delegando I’elaborazione allo UseCase (interface) e alla sua corrispettiva implementazione, ossia al
Service. Una volta che quest’ultimo tornera 'oggetto di dominio, il controller lo convertira nuova-
mente in ChatDTO affinché vengano rispettati i principi del modello esagonale.

« InsertChatCmd: command object creato a partire dal DTO, formalizza e incapsula i parametri effettivi
della richiesta. Utile a separare i dati provenienti dall’esterno dal formato atteso dalla logica di busi-

47 /72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#retrieval-periodico

Specifica Tecnica

SWEETEN

ness, garantendo isolamento tra livelli. I parametri presenti all’interno di tale richiesta rimangono i
medesimi citati e spiegati in precedenza per il InsertRequestDTO.

InsertChatUseCase: interfaccia che rappresenta la porta di ingresso della logica applicativa per
Pinserimento in database di una nuova Chat. Utile per garantire disaccopiamento tra Controller e
Service.

InsertChatService: implementazione concreta dell’interfaccia precedente, e la classe principale
della business logic. Non interagisce direttamente con il database, il suo ruolo ¢ quello di orchestrare
un corretto inserimento di una Chat nel database. In linea con i principi dell’architettura esagonale,
questa classe consente di mantenere la logica di business indipendente dall’infrastruttura.

InsertChatPort: questa interfaccia rappresenta la porta di uscita (output port) dal punto di vista
della logica applicativa. Astrae il meccanismo mediante il quale viene eseguito il processo di inseri-
mento dati nel database.

InsertChatAdapter: implementazione concreta dell’interfaccia spiegata in precedenza, funge da
punto di collegamento tra logica applicativa al sistema di persistenza ma non accede al database. Il
suo primo compito & quello di formalizzare la richiesta ricevuta (FetchHistoryCmd) in un formato
adatto al repository, estraendo e passando in modo esplicito i parametri (id, numChat) necessari
alla query. Dopodicheé riceve i dati persistiti (ChatEntity), li trasforma in dati di dominio (Chat) e li
restituisce al Service.

ChatRepository: componente incaricata dell’accesso diretto a PostgreSQL, utilizzando

per la gestione delle entita e delle query. Fornisce il metodo insertStoricoChat(), che ha il compito
di persistere una nuova conversazione nel database. Prima di creare la nuova entita, viene effettuata
una lettura dal repository lastUpdateRepo, per recuperare il valore corrente dell’ultima data di
aggiornamento, lastFetch, utilizzato poi per popolare il medesimo campo della nuova conversazione
(domanda-risposta).

A seguire, viene inserito il metodo «insertStoricoChat()» presente in questa classe.

export class ChatRepository {
constructor(
@InjectRepository(ChatEntity) //tabella db della chat
private readonly chatRepo: Repository<ChatEntity>,

@InjectRepository(LastUpdateEntity) //tabella db con unico record data
ultimo retrieval info
private readonly lastUpdateRepo: Repository<LastUpdateEntity>,
) {}

async insertChat(question: string, answer: string, date: Date):
Promise<ChatEntity> {
const lastUpdate = await this.lastUpdateRepo.findOne({ where: { id: 1 } });

if (!lastUpdate) {
throw new Error('LastUpdate entry not found');

}

const newChat: ChatEntity = this.chatRepo.create({
question,
gquestionDate: date,
answer,

lastFetch: lastUpdate.lastFetch.toIS0String()
1)

48 /72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#typeorm

Specifica Tecnica

await this.chatRepo.save(newChat);

return newChat;

}
}
Chat: rappresenta l'entita di dominio; una singola Chat rappresenta una coppia di messaggi, ossia
include una domanda e la rispettiva risposta. La conversazione con , quindi, si compone
di Chats.

ChatDTO: data transfer object di uscita, costruito dal controller a partire dagli oggetti Chat.

Message: rappresenta l'entita di dominio che incapsula le informazioni relative a un singolo messag-
gio all’interno di una Chat.

MessageDTO: data transfer object utilizzato per esporre i singoli messaggi all’esterno.

ChatEntity: rappresenta la mappatura dell’entita «Chat» nel database PostgreSQL, gestita tramite

. B’ associata a una tabella generata automaticamente e viene utilizzata per persistere
ogni conversazione tra I'utente e BuddyBot. I suoi campi sono stati citati e spiegati nella sezione
precedente durante la spiegazione della medesima classe.

LastUpdateEntity: rappresenta ’entita incaricata di tracciare la data dell’'ultimo

effettuato, ovvero I'ultimo momento in cui € stato eseguito un fetch globale delle informazioni.
Nel database, la tabella last_update ospita un unico record persistente, contenente esclusivamente la
data di aggiornamento piu recente.

import { Entity, PrimaryGeneratedColumn, Column } from 'typeorm';

@Entity('last update')

export class LastUpdateEntity {
@PrimaryGeneratedColumn()
id: number;

@Column({type: 'timestamp' })
lastFetch: Date;

5.5.4) Inserimento dell’ultima data di recupero informazioni

« LastUpdateDTO: data transfer object utilizzato per rappresentare il payload della richiesta in arrivo.

Contiene un unico campo lastFetch, espresso come stringa, che rappresenta la data da registrare
come ultimo fetch delle informazioni.

« InsertLastUpdateController: punto diingresso del microservizio per larichiesta di aggiornamento

del dato relativo all’'ultimo retrieval. Il consumer (ossia tale controller) resta in ascolto di nuovi
messaggi sulla coda “lastFetch_queue” ed espone un metodo insertLastRetrieval() che riceve come
input un LastUpdateDTO, che trasformera poi in un command object (Cmd). Ritornera infine un
boolean per rappresentare l’esito dell’operazione.

« LastUpdateCmd: si tratta del command object utilizzato per incapsulare e strutturare il dato passato

dal DTO, prima di invocare lo UseCase. Questo passaggio consente di isolare il formato esterno (DTO)
dalla logica interna, mantenendo un’interfaccia pulita verso il dominio applicativo.

49 /172

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#buddybot
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#typeorm
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#retrieval-periodico
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#retrieval-periodico

A
Specifica Tecnica

SWEETEN

InsertLastUpdateUseCase: interfaccia che rappresenta la porta di ingresso della logica applicativa
per l'inserimento in database di una nuova «data di ultimo aggiornamento». Utile per garantire
disaccopiamento tra Controller e Service.

InsertLastUpdateService: implementazione concreta dell’interfaccia precedente, é la classe prin-
cipale della business logic. Non interagisce direttamente con il database, il suo ruolo & quello
di orchestrare un corretto inserimento in database della data ottenuta. In linea con i principi
dell’architettura esagonale, questa classe consente di mantenere la logica di business indipendente
dall’infrastruttura.

InsertLastUpdatePort: questa interfaccia rappresenta la porta di uscita (output port) dal punto di
vista della logica applicativa. Astrae il meccanismo mediante il quale viene eseguito il processo di
inserimento del dato in questione nel database.

InsertLastUpdateAdapter: implementazione concreta dell’interfaccia spiegata in precedenza, funge
da punto di collegamento tra logica applicativa al sistema di persistenza, richiamando il metodo
richiesto ma non accedendo al database.

ChatRepository: componente incaricata dell’accesso diretto a PostgreSQL, utilizzando

per la gestione delle entita e delle query. In questo contesto, espone il metodo insertLastRetrieval(),
che si occupa di aggiornare il valore della data di ultimo accesso nel record persistito della tabella
last_update. Si individua il record con id = 1 (ossia unico record presente nella tabella) aggiornando
il campo lastFetch con il dato nuovo da inserire.

A seguire, viene inserito il metodo «insertLastRetrieval()» presente in questa classe.

export class ChatRepository {
constructor(
@InjectRepository(ChatEntity) //tabella db della chat
private readonly chatRepo: Repository<ChatEntity>,

@InjectRepository(LastUpdateEntity) //tabella db con unico record data
ultimo retrieval info
private readonly lastUpdateRepo: Repository<LastUpdateEntity>,
) {}

async insertlLastRetrieval(date: string): Promise<boolean> {
const parsedDate = new Date(date);

//id sempre 1
const existing = await this.lastUpdateRepo.findOne({ where: { id: 1 } });

if (existing) {
existing.lastFetch = parsedDate;
await this.lastUpdateRepo.save(existing);

} else {
const newEntry = this.lastUpdateRepo.create({
id: 1,
lastFetch: parsedDate,
1)
await this.lastUpdateRepo.save(newEntry);
}
return true;

50/ 72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#typeorm

Specifica Tecnica

- LastUpdateEntity: rappresenta lentita incaricata di tracciare la data dell’ultimo
effettuato, ovvero ['ultimo momento in cui é stato eseguito un fetch globale delle informazioni.
Nel database, la tabella last_update ospita un unico record persistente, contenente esclusivamente la
data di aggiornamento piu recente.

5.5.5) Ottenimento della data di ultimo recupero / aggiornamento informazioni

+ LastUpdateDTO: data transfer object utilizzato per trasmettere verso 'esterno il valore corrente della
data di ultimo aggiornamento.

« FetchLastUpdateController: rappresenta il punto di ingresso del microservizio per la richiesta di
lettura della data relativa all’ultimo retrieval periodico effettuato dal sistema. Il consumer (ossia tale
controller) resta in ascolto di nuovi messaggi sulla coda “getLastFetch_queue” ed espone un metodo
fetchLastUpdate(). Una volta ricevuto un messaggio, attiva il metodo il quale delega I’elaborazione
al caso d’'uso implementato nel FetchLastUpdateService.

+ FetchLastUpdateUseCase: interfaccia che rappresenta la porta di ingresso della logica applicativa
per il recupero del dato dal database. Utile per garantire disaccopiamento tra Controller e Service.

+ FetchLastUpdateService: implementazione concreta dell’interfaccia precedente, € la classe princi-
pale della business logic. Non interagisce direttamente con il database, il suo ruolo ¢ quello di
orchestrare un corretto recupero della «data di ultimo aggiornamento delle informazioni» presente
in database. In linea con i principi dell’architettura esagonale, questa classe consente di mantenere
la logica di business indipendente dall’infrastruttura.

« FetchLastUpdatePort: questa interfaccia rappresenta la porta di uscita (output port) dal punto di
vista della logica applicativa. Astrae il meccanismo mediante il quale viene eseguito il processo di
recupero del dato in questione dal database.

+ FetchLastUpdateAdapter: implementazione concreta dell’interfaccia spiegata in precedenza, funge
da punto di collegamento tra logica applicativa al sistema di persistenza, richiamando il metodo
richiesto ma senza accedere al database.

+ ChatRepository: componente incaricata dell’accesso diretto a PostgreSQL, utilizzando
per la gestione delle entita e delle query. In questo contesto viene esposto il metodo fetchLastUp-
date(), responsabile del recupero dell’'unico record presente nella tabella last _update, contenente la
data dell’ultimo retrieval periodico. Si individua il record con id = 1 (ossia unico record presente
nella tabella) e, una volta recuperato, viene restituito al chiamante.

A seguire, viene inserito il metodo «fetchLastUpdate()» presente in questa classe.

async fetchLastUpdate(): Promise<LastUpdateEntity> {
const entity = await this.lastUpdateRepo.findOne({ where: { id: 1 } });
if (lentity) {
throw new Error('LastUpdate-record not found (in db)');

}

return entity;

}

+ LastUpdate: rappresenta l'entita di dominio, contiene un solo campo lastFetch, espresso come
stringa, che identifica il momento in cui € stato eseguito 1'ultimo fetch periodico delle informazioni.

« LastUpdateEntity: rappresenta lentita incaricata di tracciare la data dell’ultimo
effettuato, ovvero I'ultimo momento in cui é stato eseguito un fetch globale delle informazioni.
Nel database, la tabella last_update ospita un unico record persistente, contenente esclusivamente la
data di aggiornamento piu recente.

51/72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#retrieval-periodico
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#retrieval-periodico
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#typeorm
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#retrieval-periodico
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#retrieval-periodico

Specifica Tecnica

5.6) Microservizio Informazioni

Il microservizio Informazioni gestisce 'interazione tra il sistema e tre fonti esterne — Jira, Confluence
e GitHub — recuperando informazioni rilevanti che vengono archiviate in un database vettoriale.
Oltre alla fase di acquisizione e persistenza dei dati, il microservizio espone funzionalita di retrieval
semantico, fornendo le informazioni piu pertinenti in base alle query degli utenti per supportare il
modello linguistico nella generazione di risposte contestualizzate.

5.6.1) Funzionalita principali

Il microservizio si articola in quattro casi d’uso fondamentali:

» Recupero e memorizzazione dei dati da Jira;

« Recupero e memorizzazione dei dati da Confluence;

« Recupero e memorizzazione dei dati da GitHub;

« Recupero di informazioni rilevanti basato sulle query utente.

Tutte le richieste vengono ricevute in modalita asincrona tramite RabbitMQ, che opera come
message broker. Ogni messaggio attiva il caso d’uso corrispondente, gestito secondo un’architettura
esagonale che garantisce una netta separazione tra logica di dominio, servizi applicativi e adattatori
per l'integrazione con fonti esterne e sistema di storage.

5.6.2) Classi condivise
5.6.2.1) Qdrant-information-repository

Questa classe gestisce la persistenza e il retrieval delle informazioni nel database vettoriale Qdrant,
fungendo da punto centralizzato per le operazioni di salvataggio e recupero. Il repository viene
inizializzato con un’istanza del Vector Store di LangChain passata come attributo nel costruttore,
permettendo un’astrazione efficace rispetto all’implementazione specifica del database vettoriale.

Operazioni principali:
« storeInformation(info: Information): Result

Questo metodo gestisce il salvataggio di nuove informazioni nel database vettoriale attraverso i

seguenti passaggi:

1. Estrazione dei metadati dall’oggetto Information;

2. Verifica dell’esistenza di vettori precedenti con lo stesso identificativo;

3. Rimozione di eventuali vettori esistenti utilizzando i Metadata per garantire la consistenza;

4. Suddivisione del documento in segmenti piu piccoli (chunking) se la dimensione supera la soglia
massima per un embedding efficace;

5. Generazione degli embedding per ogni segmento attraverso il model provider gestito da Lang-
Chain;

6. Salvataggio dei vettori risultanti nel database vettoriale attraverso 'uso Vector Store di Lang-
Chain.

Il processo di chunking é particolarmente importante per gestire documenti di grandi dimensioni,
assicurando che ogni segmento possa essere correttamente vettorializzato mantenendo al contempo
la coerenza semantica.

« retrieveRelevantInfo(query: string, k?: number): InformationEntity*

Implementa una ricerca semantica utilizzando i metodi nativi di LangChain per il Vector Store:
1. Conversione della query testuale in un vettore embedding;
2. Esecuzione di una ricerca di similarita nel database vettoriale;

52/72

Specifica Tecnica

3. Recupero dei k documenti piu rilevanti (dove k é configurabile, con un valore predefinito);
4. Ordinamento dei risultati in base al punteggio di similarita;

La ricerca semantica permette di identificare documenti concettualmente simili alla query
dell’utente, anche quando non condividono esattamente gli stessi termini, grazie alla rappresenta-
zione vettoriale dello spazio semantico.

5.6.2.2) Metadata

Contiene informazioni supplementari relative agli oggetti di business salvati nel database vettoriale.
Questi metadati identificano tutti i vettori derivati da un oggetto originale, consentendo modifiche o
rimozioni precise dei dati nel database.

5.6.2.3) Information

Rappresenta un oggetto di business completo dei relativi Metadata, garantendo il corretto salvataggio
del contenuto documentale. Questa classe assicura che gli oggetti provenienti da Jira, GitHub e
Confluence e i loro metadati siano salvati coerentemente.

5.6.2.4) InformationEntity

Entita di repository per Information, agisce come DTO per la persistenza.

5.6.2.5) MetadataEntity

Entita di repository per Metadata, essenziale per I'identificazione e gestione dei vettori.

5.6.2.6) Result

Classe di supporto che fornisce un meccanismo standardizzato per rappresentare ’esito di operazioni
di recupero e salvataggio dati. Permette di distinguere tra successo e fallimento, e in caso di errore, di
fornire una descrizione dettagliata.

5.6.3) Recupero e memorizzazione dei dati da GitHub

53/72

Specifica Tecnica
SWEETEN

FelchGRRUBDTO | GithubFetchAndStoreContraller | P—
1 | aTo
_f;"@}‘gﬂ;f:;mm | HesehandStareGinuintojreg: Feich Gith1£DTO): ReslD | ::nx;s‘i:gmlmn

¥

RepoDTO GithublseCase Result
~owmer. stiing “leschandStareiniofred: GilhubCmd): Resul “succass: boolean
“repahlame: string - ~error: sty

“branchMame: string

GithubService

RepaCmd
awner: sing
-rapablame: siring
“branchName: sing FileCmd GithubCmd RepaCmd
2 'wl\;f_v;:h Aastpdate: Date e siring
. -repaCdLiss: RepoCmd* -repahlame: siring
i ~repasitory. siring s
H “beanch: siring =

GithubCmd L)

“lasiUpiate: Dase
“repaCineLei: RepoCmd®

A3

lehuhg\mn GithbubCorhmithFiPart

uhhllg-)gsﬂﬁpun

+leschFilelnfolreg: File Ce): File” HesehCameniafafreq. GilubCd). Commir

GithabCondl)-

Y
Commit
File “repotiame;sving
; dvary: swing
R —— :ﬁ;‘ string rlnm\ sing
fh';u*pd"“amm"t e \epasnumam string
“Lranchtame: st
maincanguage: sting ot s
~authar. siivg.
WorkflowRun
il bt
“slagus: siring
~dunalion_seconds: nunber | [-state. string
epasilcey_ame: sy epasilceyNarme: sting
CommentPR
~autharhare: string
~coment: string
ate: Date

GithubAPIRepository

~setakit: Octokil

.mn::mmms nu[wve suring, repahlame: suing, branch. suring, lesiUpdae: Date}. Json
e lesinfofavner. sting, repabame: siring, comimitSha: saring): Jsan
rens Jeinipt: Sring, . =min, rapt 481G, rane S Json

| IetchRawFileCanteniluwner: ing. reps: siteg, paih, sting. branch. Sing): sting

#letchPullRequestsinfofowner. suing, repoName: slring, baseBranchName: String)- Json
HetehPul Resuestblodiiedes{oner: s tepehiree: s, il umber]: string®
#letchPullReues Ry merdsjoaer: s epohlame: sing. mber. tmber). Json
eschRepositryinlofonmer snu\; repobiarhe: string) Json

#letchWorkfaws Infoowner. sting, repoblame: Jeont

—mnwmnmﬂu-umum siring, remoName: sy, woekfiow_t number, since_created: Date]: Json®

Figura 30: Diagramma UML di dettaglio riguardo alla raccolta delle informazioni di Github

54 /72

Specifica Tecnica

SWEETEN
GithubFetchAndStoreController ResultDTO
FetchGithubbT™O | = [———— 2 -success: boolean
JastUpdate: Date b - - =m - mmmemmm oS +ietchAndStoreGithublnfo(req: FetchGithubDTO): ResulDTO —errar slr'ing
-repoDTOList RepoDTO"
: " GithubCmd
W ResultDTO GithubllseCase ~ =--c-emeememeoieen o -lastUpdate: Date
. st *
RepoDTG -success: boolean +elchAndStorelnfo(rely: GithubCmd): Result -repoCmaList: RepoCmd
-error: string b .
-owner: string e !
-repoMame: string i
-branchMame: string Foat- ;
GithubService Y
k! RepoCmd
"-. -awner: string
. 5 -repoMame; string
- K N -branchMame: string
File) "
-path: string '
-sha: string -
- -repositoryMame: string L “
Repository -branchMame: string ol %
-id: number ~content: string - 5,
-name: string = o A
-createdAt: Date B '-‘J
-lastUpdateAr: Date : O
-mainganguage: string " H I GithubStorePort
Githubinfo E
- Thuln - e- +storelnfo(inf: Githubinfo): Result -.
-repos: Repositony® R amrmt® T :‘i
-commits: Commit® [T,
Commit files: File® T Result
- -pullRequests: PulRequest™ -success: boolean
-repoName: S.U'"Q) L o=er| -wiorkfiows: Workflow® -errar string
'DW"'E'REPFS'W'T: sing e.--=" -workflowRuns: WorkflowRun*
-branch: string -
-hash: string K : . H
-message: string . : A :
-dateGFCommit: Date H s
-modifiedFiles: string* - H :
-author: string ‘," i N, :
1 : Y Metadata .
i a - -origin: Enum :
K H ' -type: Enum '
IS 'l 4 -originiD: String i
Wor . PullRequest Workflow H
iy -id: number -id: mumber "“‘ H
-id: numkser . - etri ' r
talls: siri -pull_number. number -name: string H .
; "':' nd R title: string -state: string i
:|0I-Igr_'asl?'lrll1_gszcm 5 numier -th;:ripﬁst':: string -repositary_nams: string Information
e -status: string i
-trigger: slr!ng -assigihess: shing® StoreGithubAdapter| o -content: String
-warkflow_id: nu!itE_t reviewsrs: siring* -metadata: Metadata
-wearkfiow_name: string -comment: CommentPR* '
-modifiedFiles: string* -‘1 :
-fromBranch: string o o
_-*"| -toBranch: string a -
e -repositoryMame: string il o
& i o MetadataEntity
CommentPR o ’,." -origin: Enum
-authorMame: string Ca -type: Enum
-content: string . =" -originlD: String
-data: Date o i
drant-informati it
QdrantVectorStore L qdrant-in lon-repository InformationEntity
""""" +vectorStore: Qdrant\VectorStores | -cantent: String
. : n +extSphitter: RecursiveTextSplitter “metadata; MetadataEntity
RecursiveTextSplitter fow-----=- +storeinformation(infoToStore: Information): Result
+retrieveRelevantinfolgueny: String): InformationEntity™

Figura 31: Diagramma UML di dettaglio riguardo al salvataggio delle informazioni di Github
5.6.3.1) FetchGithubDTO

Classe che viene ricevuta in input dall’InformationController, contiene una lista di RepoDTO, spiegati
in seguito, e la data dall’ultima raccolta di informazioni.

export class FetchGithubDto {
constructor (
private repoDTOList: RepoGithubDTO[],
private lastUpdate?: Date
){}
}

5.6.3.2) RepoDTO

55/72

SWEETEN

Specifica Tecnica

Classe che contiene le informazioni necessarie a identificare univocamente la risorsa di cui vogliamo
raccogliere le informazioni, ossia:

« a chi appartiene il repository su

« il nome del repository

« il branch del repository

export class RepoGithubDTO{
constructor(
private owner: string,
private repoName: string,
private branch _name: string
){}
}

5.6.3.3) GithubCmd

Questa classe rappresenta il Command che riceve la business logic, contiene una lista di RepoCmd, che
contiene gli stessi campi di RepoDTO, e lo stesso “lastUpdate” ricevuto nel FetchGithubDto

export class GithubCmd {
constructor(
private repoCmdList:RepoCmd[],
private lastUpdate?:Date
){}
}

5.6.3.4) RepoCmd

Questa classe € la classe RepoDTO0 adattata alla business logic.

export class RepoCmd{
constructor (
private owner: string,
private repoName: string,
private branch_name: string
){}
}

5.6.3.5) Commit

Questa classe ¢ oggetto della business logic, contiene le informazioni che vogliamo raccogliere dei
commit di una determinata repository.

export class Commit{
constructor(

private repoName: string,
private ownerRepository: string,
private branch: string,
private hash: string,
private message: string,
private dateOfCommit: string,
private modifiedFiles: string[],
private author: string,

) {}

toStringifiedJson(): string {
return JSON.stringify(this);
}

56 /72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#github

" Specifica Tecnica
SWEETEN

getMetadata(): Metadata {
return new Metadata(Origin.GITHUB, Type.COMMIT, this.hash);
}
}

5.6.3.6) File

Questa classe € oggetto della business logic, contiene le informazioni che vogliamo raccogliere dei files
di un determinato branch in una determinata repository.

export class File{
constructor(
private path: string,
private sha: string,
private repositoryName: string,
private branchName: string,
private content: string

) {}

toStringifiedJson(): string {
return JSON.stringify(this);
}

getMetadata(): Metadata {
return new Metadata(Origin.GITHUB, Type.FILE, this.sha);
}
}

5.6.3.7) PullRequest

Questa classe ¢ oggetto della business logic, contiene le informazioni che vogliamo raccogliere delle
pull requests in una determinata repository.

export class PullRequest{
constructor(

private id: number,
private pull_number: number,
private title: string,
private description: string,
private status: string,
private assignees: string[],
private reviewers: string[],
private comments: CommentPR[],
private modifiedFiles: string[],
private fromBranch: string,
private toBranch: string,
private repository name: string,

) {}

toStringifiedJson(): string {
return JSON.stringify(this);
}

getMetadata(): Metadata {
return new Metadata(Origin.GITHUB, Type.PULLREQUEST, this.id.toString());

}

57 /172

O | |
L Specifica Tecnica
SWEETEN

5.6.3.8) CommentPR

Questa classe € oggetto della business logic, € contenuta all’interno di PullRequest in quanto si occupa
di contenere al suo interno le informazioni riguardanti un determinato commento di review su una

PullRequest.

export class CommentPR{
constructor(
private authorName: string,
private content: string,
private date: Date

) {}

getAuthorName(): string {
return this.authorName;

}

getContent(): string {
return this.content;

}

getDate(): Date {
return this.date;
}
}

5.6.3.9) Repository

Questa classe € oggetto della business logic, contiene le informazioni che vogliamo raccogliere di una
determinata repository.

export class Repository {
constructor(
private id: number,
private name: string,
private createdAt: string,
private lastUpdate: string,
private mainLanguage: string,

) {}

toStringifiedJson(): string {
return JSON.stringify(this);
}

getMetadata(): Metadata {
return new Metadata(Origin.GITHUB, Type.REPOSITORY, this.id.toString());

}
}

5.6.3.10) Workflow

Questa classe ¢ oggetto della business logic, contiene le informazioni che vogliamo raccogliere dei
workflow in una determinata repository.
export class Workflow{

constructor(

private id: number,
private name: string,

58 /72

o

\®/ Specifica Tecnica
SWEETEN

private state: string,
private repository name: string,

) {}

toStringifiedJson(): string {
return JSON.stringify(this);
}

getMetadata(): Metadata {
return new Metadata(Origin.GITHUB, Type.WORKFLOW, this.id.toString());

}
}

5.6.3.11) WorkflowRun

Questa classe e oggetto della business logic, & contenuta all’interno di Workflow in quanto si occupa
di contenere al suo interno le informazioni riguardanti una determinata run di un Workflow.

export class WorkflowRun {
constructor(

private readonly id: number,
private readonly status: string,
private readonly duration seconds: number,
private log: string,
private trigger: string,
private workflow id: number,
private workflow name: string

) {}

toStringifiedJson(): string {
return JSON.stringify(this);

}

getMetadata(): Metadata {
return new Metadata(Origin.GITHUB, Type.WORKFLOW RUN, this.id.toString());

}
}

5.6.3.12) GithubFetchAndStoreController
Controller che resta in attesa di messaggi sulla coda information-queue, al fine di portare a termine

le operazioni di raccolta e salvataggio delle informazioni ottenute da Github. Ritorna come output un
oggetto ResultDTO.

5.6.3.13) GithubUseCase
Interfaccia che si comporta da porta d’ingresso alla business logic, offre il metodo fetchAndStoreInfo,
che prende in input il GithubCmd ricevuto dal controller.

export interface GithubUseCase {
fetchAndStoreGithubInfo(req: GithubCmd): Promise<Result>;

}
5.6.3.14) GithubService

La classe principale della business logic, che implementa GithubUseCase citato precedentemente. Si
occupa di recuperare tutte le informazioni descritte nell’ e di salvarle nel
database vettoriale.

59/72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#analisi-dei-requisiti

-l . .
3 Specifica Tecnica
SWEE

5.6.3.15) GithubCommitAPIPort

Interfaccia che si comporta come porta d’uscita (outbound port), offre il metodo fetchCommitInfo che
riceve in input GithubCmd e ritorna in output una lista di Commit.

export interface GithubCommitAPIPort {
fetchGithubCommitsInfo(req: GithubCmd): Promise<Commit[]>
}

5.6.3.16) GithubFileAPIPort

Interfaccia che si comporta come porta d’uscita (outbound port), offre il metodo
fetchGithubFilesInfo che riceve in input FileCmd e ritorna in output una lista di Commit.

export interface GithubFilesAPIPort {
fetchGithubFilesInfo(req: FileCmd[]): Promise<File[]>
}

5.6.3.17) GithubPullRequestAPIPort

Interfaccia che si comporta come porta d’uscita (outbound port), offre il metodo
fetchGithubPullRequestsInfo che riceve in input GithubCmd e ritorna in output una lista di
PullRequest.

export interface GithubPullRequestsAPIPort {
fetchGithubPullRequestsInfo(req: GithubCmd): Promise<PullRequest[]>
}

5.6.3.18) GithubRepositoryAPIPort

Interfaccia che si comporta come porta d’uscita (outbound port), offre il metodo
fetchGithubRepositoryInfo che riceve in input GithubCmd e ritorna in output una lista di
Repository.

export interface GithubRepositoryAPIPort {
fetchGithubRepositoryInfo(req: GithubCmd): Promise<Repository[]>
}

5.6.3.19) GithubWorkflowAPIPort

Interfaccia che si comporta come porta d’uscita (outbound port), offre i metodi:

+ fetchGithubWorkflowInfo che riceve in input GithubCmd e ritorna in output una lista di Workflow.

+ fetchGithubWorkflowRuns che riceve in input WorkflowRunCmd e ritorna in output una lista di
WorkflowRun.

export interface GithubWorkflowsAPIPort {
fetchGithubWorkflowInfo(req: GithubCmd): Promise<Workflow[]>
fetchGithubWorkflowRuns(req: WorkflowRunCmd): Promise<WorkflowRun[]>
}

5.6.3.20) GithubAPIAdapter

Questa classe implementa:

e GithubCommitAPIPort

e GithubFileAPIPort

e GithubPullRequestAPIPort
e GithubRepositoryAPIPort
e GithubWorkflowAPIPort

60/ 72

SWEETEN

Specifica Tecnica

ponendosi come adapter tra la business logic e la classe che si occupa di fare le richieste API,
ossia GithubAPIRepository. Trasforma infatti gli oggetti JSON “grezzi” ritornati da quest’ultima e li
trasforma negli oggetti della business logic.

5.6.3.21) GithubAPIRepository

Questa ¢ la classe che si occupa di interfacciarsi direttamente con le API di Github. Esegue richieste
tramite il client offerto da octo-kit e ritorna JSON con i dati “grezzi”.

5.6.3.22) GithubStoreInfoPort

Questa € l'interfaccia che funge da porta d’uscita (outbound port) al fine di salvare i GithubInfo nel
database vettoriale, offre il metodo storeGithubInfo che riceve in input una lista di GithubInfo.

export interface GithubStoreInfoPort {
storeGithubInfo(req: GithubInfo): Promise<boolean>

}
5.6.3.23) GithubStoreInfoAdapter

Questa classe implementa GithubStoreInfoPort, si occupa di trasformare i GithubInfo in
Information per poter essere usati dal qdrant-information-repository ed essere salvati sul database
vettoriale.

5.6.4) Recupero e memorizzazione dei dati da Confluence

ConfluenceFetchAndStoreController

FetchConfluenceDTO I | 1| FeichConfluenceCmd
-lastUpdate: Date +etchAndStoreConfluencelnfo(req: FetchConfluenceDTO): ResutDTO | 7777777 “lastUpdale: Date
Metadata . 1
-origin: Enum L ObjectToStore e "'-“-"\
-type: Enum B PP | * [
_originiD: String +getMetadata(): Metadata
- +toStringifiedJson(): string A ResultDTO

ConfluengeUseCase -success: boolean
ConfluenceDocument error: string

+fetchAndStoreDocument(req: FetchConfluenceCmd): Result

-id: string
-title: string
-status: string
-author: string
-owner: string
-content: string

-space: number | ConfluenceService | _success: boolean
I 1

I 1 -error: string

: K
A’ |
ConfluenceDocument t
-id: string g
-title: string
_____ | -status: string
ConflueniceAPIPort -author: string [< StoreConfluencePort

Result

: : -owner: string
+fetchDocument(req: FetchConfluenceCmd): Document® ot slrigq +storeDocuments(docs: CobfluenceDocument”): Result Metadata
-space: number “origin: Enum
-type: Enum
ConfluenceAPIAdapter -originlD: String
| N
MetadataEntity Result A
-origin: Enum -success: boolean T Inf ti
-type: Enum aor: otiim RE nformation
-originiD: String 9 -content: String
s -metadata: Metadata
A .
. * 7
ConfluenceApiRepository .
:Exﬁ%ﬁiﬂl.essllnr:\% InformationEntity qdrant-information-repository
. . " -vectorStore: QdrantVectorStore
atlassianApikey: string _cm::;“i Sluﬂgm menity BT T 1T -textSplitter: RecursiveTextSplitter
+fetchConfluencePages(daysBack: number): Json* -metadata: Metadatakntity
+storeinformation(infoToStore: Information): Result
+retrieveRelevantinfo(query: String): InformationEntity*

RecursiveTextSplitter QdrantVectorStore

Figura 32: Diagramma UML di dettaglio riguardo a Confluence
5.6.4.1) ConfluenceController

61/72

A
Specifica Tecnica

SWEETEN

Controller che resta in attesa di messaggi sulla coda information-queue, al fine di portare a termine
le operazioni di raccolta e salvataggio delle informazioni ottenute da Confluence. Ritorna come output
un oggetto ResultDTO.

5.6.4.2) ConfluenceUseCase

Interfaccia che si comporta da porta d’ingresso alla business logic, offre il metodo
fetchAndStoreDocument, che prende in input il ConfluenceCmd ricevuto dal controller e ritorna come
output un oggetto Result.

export interface ConfluenceUseCase {
fetchAndStoreConfluenceInfo(req: ConfluenceCmd): Promise<Result>;

}

5.6.4.3) ConfluenceService

La classe principale della business logic, che implementa ConfluenceUseCase citato precedentemente.
Si occupa di recuperare i documenti creati e modificati entro una certa data, presente all’interno di
ConfluenceCmd.

export class ConfluenceService implements ConfluenceUseCase {
constructor(
@Inject (CONFLUENCE API PORT) private readonly confluenceAPIAdapter:
ConfluenceAPIPort,
@Inject(CONFLUENCE STORE_INFO PORT) private readonly confluenceStoreAdapter:
ConfluenceStoreInfoPort

) {}

async fetchAndStoreConfluenceInfo(req: ConfluenceCmd): Promise<Result> {
const documents = await this.confluenceAPIAdapter.fetchDocuments(req);
return await this.confluenceStoreAdapter.storeDocuments(documents);;
}
}

5.6.4.4) ConfluenceDocument

Classe del domain, definisce le informazioni che vengono raccolte e viene usato come oggetto della
business logic.

5.6.4.5) ConfluenceAPIPort

Interfaccia che si comporta come porta d’uscita (outbound port), offre il metodo fetchDocuments che
riceve in input ConfluenceCmd e ritorna in output una lista di ConfluenceDocument.

5.6.4.6) ConfluenceAPIAdapter

Questa classe implementa ConfluenceAPIPort, ponendosi come adapter tra la business logic e la
classe che si occupa di fare le richieste APIL, ossia ConfluenceAPIRepository. Trasforma infatti gli
oggetti JSON “grezzi” ritornati da quest’ultima e li trasforma negli oggetti della business logic di
ConfluenceDocument.

5.6.4.7) ConfluenceAPIRepository

Questa ¢ la classe che si occupa di interfacciarsi direttamente con le API di Confluence. Esegue richieste
HTTP e ritorna JSON con i dati “grezzi”.

5.6.4.8) ConfluenceStorePort

62/72

o .
B Specifica Tecnica
SWEETEN

Questa & linterfaccia che funge da porta d’uscita (outbound port) al fine di salvare i
ConfluenceDocument nel database vettoriale, offre il metodo storeDocuments che riceve in input una
lista di ConfluenceDocument.

export interface ConfluenceStoreInfoPort {
storeDocuments(req: ConfluenceDocument[]): Promise<Result>;

}
5.6.4.9) ConfluenceStoreAdapter

Questa classe implementa ConfluenceStorePort, si occupa di trasformare i ConfluenceDocument in
Information per poter essere usati dal qdrant-information-repository ed essere salvati sul database
vettoriale.

5.6.5) Recupero e memorizzazione dei dati da Jira

Il seguente diagramma illustra le classi coinvolte nel caso d’'uso «Recupero e memorizzazione dei ticket
di Jira», evidenziando l'architettura esagonale adottata:

FetchliroTO JiraFetchAndStoreController O
lastUpdate: Date [€-------eneeenneenn ObjectToStore
-boardid: number +fetchAndStorediralnfo(req: FetchJiraDTO): ResultDTO +getMetadath(); Metadata
e - +oStringifiedJson(): string
ResultDTO e+ . -
Lt e
+success: boolean T Ticket Metadata
+error: string £ -Id: string -origin: Enum
FetchJiraCmd -title: string -type: Enum
“boardid. stin P JiraUgeCase rdeslcnptiun . -onginiD: String
. a - -assignee: string
-lastUpdate: Date +fetchandStoreTickets(refs: FetchliraCmd): Result -status: string 7
Y e -relatedSprint: string '
| Result -storyPoint: string
-creator: string
JiraService +success: boolean -priority: string
+Error: string -expiryDate: Date
! . -comments: JiraComment*
E / H -relatedTickets: String*
W
Ticket
JiraAPIPort -1d: string StoreJjraPort
- - - Aitie: sting .--=="" +storeTickets(tickets: Ticket™): Result
+etchTickets(req: FetchJiraCmd): Ticket® - -description
“7-s.y)| -assignee: string L
-status: string
-relatedSprint: string
-storyPoint: string
:;:_?;:?;_‘ :['::;'gg JiraComment
JiraAPlAdapter -expiryDate: Date -body: string StorediraAdant Information
-comments: JiraComment* -author: string reJir apter . -
-relatedTickets: Sting* -created: string ::;f;;iglalgladata
=
MetadataEntity I
- Result
=angin: Enum .
-type: Enum +success: boolean
-onginlD: String +error: string
l ! :

gdrant-information-repository

InformationEntity

JiraAPIRepository

-vectorStore: QdrantVectorStore

-content: String 77 -textSplitter: RecursiveTextSplitter

-metadata: MetadataEntity
+fetchRecentlssue(daysBack: number, boardid: number) +storeinformation(infoToStore: Information): Result
T +retrieveRelevantinfo(query: String): InformationEntity™

-jiraClientV3: Version3Client

v 2 "y
Version3Client QdrantVectorStore RecursiveTextSplitter

Figura 33: Diagramma delle classi per il caso d'uso di recupero e memorizzazione dei ticket di Jira

5.6.5.1) Componenti Principali

63/72

Specifica Tecnica

5.6.5.1.1) JiraFetchAndStoreController

Punto d’ingresso per 'operazione di recupero e memorizzazione dei ticket da Jira. Riceve le richieste
esterne, le convalida e le indirizza verso il caso d’'uso appropriato. Il controller accetta in input un
FetchJiraDTO contenente tutte le informazioni necessarie, inclusa la data dell’ultimo aggiornamento
per ottimizzare l'efficienza del recupero dati.

5.6.5.1.2) JiraUseCase

Interfaccia che definisce il contratto per la logica di recupero e memorizzazione, stabilendo
una chiara astrazione tra definizione del comportamento e implementazione. Espone il metodo
WorkspaceAndStoreliraInfo(req: FetchliraCmd): Result che restituisce un oggetto Result che
rappresenta l’esito dell’operazione.

5.6.5.1.3) JiraService

Implementazione concreta di JiraUseCase che coordina:
1. Il recupero dei ticket tramite JiraAPIPort

2. L’elaborazione dei dati ottenuti

3. La memorizzazione mediante StoreJiraPort

Questo servizio incapsula la logica principale del caso d’uso, gestendo correttamente eventuali errori
durante il processo.

5.6.5.1.4) Ticket

Rappresentazione strutturata di un ticket Jira nel dominio applicativo. Implementa I'interfaccia
ObjectToStore fornendo implementazioni concrete dei metodi:

. getMetadata(): Metadata

« toStringifiedJson(): string

5.6.5.1.5) JiraComment

Modella i commenti associati a un ticket, includendo dettagli come autore, contenuto e timestamp, per
una gestione completa delle informazioni correlate.

5.6.5.1.6) JiraAPIPort

Interfaccia che astrae le operazioni di interazione con ’API Jira, definendo un contratto chiaro indipen-
dente dai dettagli implementativi. Espone il metodo FetchTickets(req: FetchJiraCmd): Ticket*
che restituisce un array di ticket creati o modificati dalla data specificata nel comando.

5.6.5.1.7) JiraAPIAdapter

Implementa JiraAPIPort gestendo la comunicazione effettiva con ’API Jira tramite JiraAPIReposi-
tory. Traduce le risposte API nel formato interno richiesto dall’applicazione.

5.6.5.1.8) JiraAPIRepository

Classe che funge da intermediario per interagire direttamente con le API di Jira. Al momento della

sua creazione, richiede I'iniezione di un client autenticato per stabilire la connessione con Jira. Espone

un metodo fetchRecentIssues(daysBack: number, boardId: number): Json* in cui entrambi i

parametri sono opzionali:

« daysBack: Specifica il numero di giorni nel passato per cui recuperare le issue. Se omesso, vengono
restituite tutte le issue accessibili all’account;

64 /72

Specifica Tecnica

 boardld: Limita la ricerca alle issue associate a una specifica board. Se omesso, vengono recuperate
le issue da tutte le board accessibili.

5.6.5.1.9) StoreJiraPort

Definisce l'interfaccia per la memorizzazione dei ticket, permettendo al nucleo applicativo di salvare
dati indipendentemente dal sistema di storage sottostante. Espone il metodo storeTickets(tickets:
Ticket*): Result che restituisce 'esito dell’operazione.

5.6.5.1.10) StoreJiraAdapter

Implementa StoreJiraPort gestendo la persistenza dei ticket nel database vettoriale tramite qdrant-
information-repository. Si occupa della trasformazione dei dati nel formato appropriato e
dell’interazione con il meccanismo di storage.

5.6.6) Recupero di informazioni rilevanti basato sulle query utente

Il seguente diagramma illustra le classi coinvolte nel caso d'uso «Recupero delle informazioni rilevanti
basato sulle query utente», evidenziando I’architettura esagonale adottata:

65/72

NG
B Specifica Tecnica
SWEETEN
Retrieval Controller
. InformationDTO
Ret linfoDTO - -
€ "EI‘: " I +retrieveRelevantinformation(req: RetrievalinfoDTO): InformationDTO - ------- 3| -content: String
“query: String -metadata: MetadataDTO
Il
MetadataDTO
C) -origin: Enum
-type: Enum
RetrievalinfoUseCase -originid: Enum
+ratrieveRelevantinfo(RgtrieveCmd): Information®
Metadata pra T
-origin: Enum - il T
-type: Enum - R
-oniginlD: String f,." Ta.
) ! T . Pt S I N
H z}_,*” RetrieveCmd
— RetrievallnfoService -
Information -guery: String
-content: String T
-metadata: Metadata T
: RetrievalinfoPort
: +retrieveRelevantinfo(RatrieveCmd): Information®
; RetrievalinfoAdapter Rdatadinte Ertity
) -origin: Enum
: -type: Enum
! -originlD: String
| A
:. gdrant-information-repository InformationEntity

-vectorStore: QdrantVectorStore
-textSplitter: Recursive TextSplitter

-content: String
-metadata: MetadataEntity

—

+storeinformation(infoToStore: Information): boolean
+retrieveRelevantinfo{guery: String): InformationEntity*

a
.

pey

QdrantVectorStore

._q

RecursiveTextSplitter

Figura 34: Diagramma delle classi per il caso d'uso di recupero di informazioni rilevanti basato sulle
query utente

5.6.6.1) Componenti Principali
5.6.6.1.1) RetrievalController

Punto d’ingresso per il recupero delle informazioni. Riceve richieste esterne contenenti una stringa
query incapsulata in un RetrievallnfoDTO, che viene poi convertito in un comando di dominio
RetrieveCmd. Dopo aver invocato il caso d’uso, restituisce un array di oggetti InformationDTO che

rappresentano le informazioni piu rilevanti trovate.

5.6.6.1.2) RetrievallnfoUseCase

66 /72

Specifica Tecnica

Interfaccia che definisce il contratto del caso d’uso, delegando la responsabilita di recuperare le infor-
mazioni rilevanti. Espone il metodo retrieveRelevantInfo(cmd: RetrieveCmd): Information*, che
restituisce un array ordinato di oggetti Information.

5.6.6.1.3) RetrievallnfoService
Implementazione concreta di RetrievallnfoUseCase, si occupa della logica principale del caso d’uso.

Riceve il comando, interagisce con la porta RetrievallnfoPort, la quale viene iniettata nel costruttore,
e restituisce il risultato sotto forma di array di Information.

5.6.6.1.4) RetrieveCmd

Oggetto di dominio che incapsula la richiesta dell'utente, contenente il campo query. Utilizzato inter-
namente per mantenere la coerenza del linguaggio di dominio tra i livelli.

5.6.6.1.5) RetrievallnfoPort

Interfaccia che astrae la logica di accesso ai dati. Espone il metodo retrieveRelevantInfo(cmd:

RetrieveCmd): Information*, consentendo al servizio applicativo di restare disaccoppiato dalla
tecnologia di persistenza.

5.6.6.1.6) RetrievalInfoAdapter

Implementazione concreta della porta RetrievallnfoPort, interagisce con gdrant-information-reposi-
tory per recuperare le informazioni rilevanti alla domanda dell’utente. Converte gli oggetti provenienti
dal repository in oggetti di dominio.

67 /72

SWEETEN

Specifica Tecnica

6) Tracciamento requisiti

6.1) Stato dei requisiti funzionali

Codice Descrizione Stato
L’utente deve accedere all’applicazione senza necessita di autentica- .
RF-001 PP . Soddisfatto
zione
Il sistema deve archiviare in modo persistente le domande degli utenti
RF-002) P & Soddisfatto
e le risposte generate
L’utente deve poter visualizzare lo storico della chat in ordine crono-
RF-003 p. Soddisfatto
logico inverso (dal piu recente al piu vecchio).
L’utente deve visualizzare un messaggio informativo che spiega che
RF-004 _ g8 . pieg Soddisfatto
non ci sono messaggi nello storico
L’utente deve visualizzare un messaggio di errore se il sistema non .
RF-005 . &8) Soddisfatto
riesce a recuperare lo storico
L’utente deve visualizzare un messaggio di errore se la richiesta non é
RF-006 88 . . Soddisfatto
stata completata a causa di un timeout
L’utente deve visualizzare un messaggio di errore se il backend non é
RF-007 . gg Soddisfatto
disponibile
L’utente deve visualizzare per ogni messaggio: il contenuto, la data e .
RF-008 per og L &8 Soddisfatto
ora di invio
L’utente deve visualizzare lo sfondo di un messaggio inviato da un
RF-009) . &8 Soddisfatto
utente di colore grigio
L’utente deve visualizzare lo sfondo di un messaggio inviato da .
RF-010 . &8 Soddisfatto
di colore blu
L’utente deve visualizzare per ogni messaggio inviato da
RF-011 | la data e I'ora dell’ultimo aggiornamento dei dati usati per generare la Soddisfatto
risposta
RF-012 L’utente deve poter scrivere una domanda in linguaggio naturale Soddisfatto
RF-013 L’utente deve poter inviare la domanda scritta al sistema Soddisfatto
RF-014 | L’utente deve poter visualizzare la risposta generata da Soddisfatto
L’utente deve essere informato se la domanda che ha posto non rientra
RF-015 | nelle competenze specifiche del sistema tramite una risposta generata Soddisfatto
da
L’utente deve essere informato se i documenti richiesti nella domanda
RF-016 | non sono disponibili all'interno del sistema tramite una risposta gene-| Soddisfatto
rata da
L’utente deve poter visualizzare un messaggio di errore se si € verifi-
RF-017 | cato un errore generico nella generazione della risposta da parte del Soddisfatto
L’utente deve poter visualizzare un messaggio di errore se la risposta
RF-018 : P : g8 . PO Soddisfatto
non ¢ stata generata perché supera la lunghezza massima consentita
L’utente deve poter visualizzare un messaggio di errore se la domanda
RF-019 P &8 Soddisfatto

supera la lunghezza massima consentita

68 /72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#buddybot
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#buddybot
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#buddybot
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#buddybot
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#buddybot
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#buddybot
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#backend

Specifica Tecnica

Il sistema deve generare una risposta appropriata alla domanda posta

RF-020) Soddisfatto
dell’'utente
1l sistema deve recuperare da GitHub le seguenti informazioni:
Per ogni repository:
. Nome della repository
. Id della repository
. Descrizione della repository
. Data di creazione della repository
« Ultima data di aggiornamento della repository
. Linguaggio principale della repository
Per ogni commit:
. Hash del commit
. Messaggio del commit
. Data e ora dell’ultimo commit
. Branch associato al commit
. File modificati nel commit
. Autore dell’'ultimo commit
» Nome della repository di appartenenza del commit
« Nome del branch di appartenenza del commit
Per ogni pull request:
. Id della pull request
. Titolo della pull request
. Descrizione della pull request
RF-021 . Stato della pull request Soddisfatto
. Assegnatario della pull request
. Reviewers della pull request
. Commenti della pull request
. File modificati nella pull request

« Branch di origine della pull request
« Branch di destinazione della pull request
. Nome repository di appartenenza

Per ogni workflow:

. Id del workflow
. Nome del workflow
. Stato del workflow

+ Nome repository di appartenenza
« Lista delle run per il workflow

Per ogni workflow run:

. Id della run

. Stato della run

. Durata in secondi della run
. Link del log della run

. Trigger della run

+ Id del workflow di appartenenza
« Nome del workflow di appartenenza

69 /72

Specifica Tecnica

Per ogni file:
. Path del file
. SHA del file

+ Nome repository di appartenenza
+ Nome branch di appartenenza
. Contenuto del file

Il sistema deve recuperare da Confluence le seguenti informazioni:
. Id di una pagina
« Titolo di una pagina
« Stato di una pagina

RF-022 . . Soddisfatto
+ Autore di una pagina
+ Owner di una pagina
« Spazio di una pagina
« Contenuto di una pagina
Il sistema deve recuperare da Jira le seguenti informazioni:
. Id di un ticket
. Titolo di un ticket
. Descrizione di un ticket
. Assegnatario di un ticket
. Stato di un ticket
« Sprint di appartenenza di un ticket
+ Story point estimate di un ticket
RF-023 . Creatore di un ticket Soddisfatto
. Priorita
. Data di scadenza
. Ticket collegati
. Commenti del ticket
Per ogni commento del ticket:
o Autore del commento
. Data di creazione
. Contenuto del commento
Il sistema deve informare I'utente in caso di errore durante la genera-
RF-024) . & Soddisfatto
zione della risposta
1l sistema deve informare I'utente se la risposta supera la lunghezza
RF-025) . P P & Soddisfatto
massima consentita
Il sistema deve fornire la data e 'ora dell’ultimo aggiornamento dei dati
RF-026 . . &8 Soddisfatto
utilizzati
Il sistema deve aggiornare i dati dei documenti provenienti da GitHub,
RF-027 88)) P Soddisfatto
Confluence e Jira ogni 24 ore
Il sistema deve salvare i dati provenienti dalle fonti (Githbu, Jira, Con- .
RF-028 . P . (] Soddisfatto
fluence) in un database vettoriale
Il sistema deve convertire i dati provenienti dalle fonti (Githbu, Jira, .
RF-029 P . (] Soddisfatto
Confluence) da forma testuale a forma vettoriale
RF-030 L’utente deve poter modificare una domanda gia inviata Non soddisfatto

RF-031

L’utente deve poter selezionare il tema chiaro o scuro per visualizzare
Pinterfaccia utente

Soddisfatto

70/ 72

Specifica Tecnica

Il sistema deve visualizzare un’icona identificativa (cliccabile ed inte-

RF-032 | rattiva) per 'accesso a una risorsa esterna, aprendo la pagina web Soddisfatto
associata in una nuova finestra o scheda del browser.

1l sistema deve visualizzare un’icona identificativa (cliccabile ed inte- .

RF-033 . , . . . Soddisfatto
rattiva) per I'accesso al sito-documentazione di Jira

Il sistema deve visualizzare un’icona identificativa (cliccabile ed inte- .

RF-034] , .] o Soddisfatto
rattiva) per I'accesso al sito-documentazione di GitHub

11 sistema deve visualizzare un’icona identificativa (cliccabile ed inte- i

RF-035 . , . . . Soddisfatto
rattiva) per l’accesso al sito-documentazione di Confluence

Il sistema deve visualizzare un’animazione di caricamento circolare .

RF-036 .) Soddisfatto
durante il recupero dello storico della chat

Il sistema deve visualizzare un’animazione di caricamento composta da .
RF-037 L. ,) . P Soddisfatto

tre puntini, durante I’elaborazione della risposta da parte del backend

Il sistema deve visualizzare un pulsante «Load More» nella parte
RF-038 | superiore della chat, che consenta all’'utente di caricare 10 messaggi Soddisfatto

precedenti non ancora visualizzati

L’utente deve visualizzare il contenuto del messaggio in formato mar-

RF-039 &8 Soddisfatto
kdown

L’utente deve poteer incollare nell’input di testo il contenuto copiato

RF-040 p) P p Soddisfatto
in precedenza

L’interfaccia utente deve scrollare verso il basso mostrando 1'ultimo .

RF-041 Soddisfatto

messaggio inviato ogni volta che I'utente invia un nuovo messaggio

Tabella 1: Stato Requisiti Funzionali

71/72

Specifica Tecnica
SWEETEN

6.2) Grafici riassuntivi

Requisiti obbligatorifunzionali soddisfatti

Figura 35: Stato dei requisiti funzionali obbligatori

Requisiti opzionalifunzionali soddisfatti

Figura 36: Stato dei requisiti funzionali opzionali

Requisiti desiderabili funzionali soddisfatti

Figura 37: Stato dei requisiti funzionali desiderabili

72/ 72

	Introduzione
	Scopo del documento
	Scopo del prodotto
	Miglioramenti e maturità
	Glossario
	Riferimenti
	Riferimenti normativi
	Riferimenti informativi
	Riferimenti Tecnici

	Tecnologie
	Tecnologie di sviluppo
	Typescript
	Langchain
	Node.js
	Nest.js
	GroqCloud
	Qdrant
	NomicAi
	PostgreSQL
	Octokit
	JiraJs
	ConfluenceJs
	Docker
	React.js
	ReactQuery
	TailwindCSS
	Next.js
	ShadCn
	LucideReact

	Tecnologie di testing
	Jest
	ESLint

	Architettura di Sistema
	Approccio alla Progettazione
	Contenitori e Deploy con Docker

	Architettura di sistema
	Strutturazione Generale del Sistema
	Architettura del frontend
	Architettura del Backend
	Architettura di Deployment
	Vantaggi dell'architettura a microservizi
	Svantaggi
	Microservizi Identificati
	Comunicazione tra Microservizi: RabbitMQ
	Pattern e implementazione

	Architettura logica
	Struttura dell'architettura esagonale
	Vantaggi

	Design pattern utilizzati
	Dependency Injection

	Progettazione di dettaglio
	Progettazione frontend
	Architettura nel dettaglio
	Componenti
	Struttura dei dati
	Gestione dello stato e del tema
	Gestione e adattamento dei dati per la chat

	Microservizio Api-Gateway
	Risposta Use-Case:
	Storico Use-Case:
	Scheduling del Fetch:

	Microservizio Chatbot
	Architettura e Componenti
	Domain Layer
	Application Layer
	Adapters Layer
	Infrastructure Layer

	Flusso Principale di Elaborazione
	Componenti Principali
	Controllers
	Use Cases e Ports
	Services
	Adapters
	Entità e Value Objects

	Integrazione con LangChain e Groq
	Comunicazione con Altri Microservizi
	Configurazione e Ambiente
	Conclusione

	Microservizio Storico Chat
	Quattro casi d'uso
	Recupero dello Storico della Chat
	Inserimento di nuovi messaggi
	Inserimento dell'ultima data di recupero informazioni
	Ottenimento della data di ultimo recupero / aggiornamento informazioni

	Microservizio Informazioni
	Funzionalità principali
	Classi condivise
	Qdrant-information-repository
	Metadata
	Information
	InformationEntity
	MetadataEntity
	Result

	Recupero e memorizzazione dei dati da GitHub
	FetchGithubDTO
	RepoDTO
	GithubCmd
	RepoCmd
	Commit
	File
	PullRequest
	CommentPR
	Repository
	Workflow
	WorkflowRun
	GithubFetchAndStoreController
	GithubUseCase
	GithubService
	GithubCommitAPIPort
	GithubFileAPIPort
	GithubPullRequestAPIPort
	GithubRepositoryAPIPort
	GithubWorkflowAPIPort
	GithubAPIAdapter
	GithubAPIRepository
	GithubStoreInfoPort
	GithubStoreInfoAdapter

	Recupero e memorizzazione dei dati da Confluence
	ConfluenceController
	ConfluenceUseCase
	ConfluenceService
	ConfluenceDocument
	ConfluenceAPIPort
	ConfluenceAPIAdapter
	ConfluenceAPIRepository
	ConfluenceStorePort
	ConfluenceStoreAdapter

	Recupero e memorizzazione dei dati da Jira
	Componenti Principali
	JiraFetchAndStoreController
	JiraUseCase
	JiraService
	Ticket
	JiraComment
	JiraAPIPort
	JiraAPIAdapter
	JiraAPIRepository
	StoreJiraPort
	StoreJiraAdapter

	Recupero di informazioni rilevanti basato sulle query utente
	Componenti Principali
	RetrievalController
	RetrievalInfoUseCase
	RetrievalInfoService
	RetrieveCmd
	RetrievalInfoPort
	RetrievalInfoAdapter

	Tracciamento requisiti
	Stato dei requisiti funzionali
	Grafici riassuntivi

