
Specifica Tecnica
2025-04-15

V1.0.0
sweetenteam@gmail.com

https://sweetenteam.github.io

Destinatari Prof. Tullio Vardanega
Prof. Riccardo Cardin
AzzurroDigitale

Redattori Valeri Mihail Belenkov
Davide Benedetti
Orlando Ferazzani
Nicolas Fracaro
Mouad Mahdi
Andrea Santi

Verificatori Valeri Mihail Belenkov
Davide Benedetti
Matteo Campagnaro
Nicolas Fracaro
Mouad Mahdi
Andrea Santi

1 / 72

mailto:sweetenteam@gmail.com
https://sweetenteam.github.io

Specifica Tecnica

Registro delle modifiche
Versione Data Autori Verificatori Dettaglio

1.0.0 2025-04-15 Valeri Mihail Belenkov Mouad Mahdi Approvazione per PB

0.0.9 2025-04-15 Valeri Mihail Belenkov Nicolas Fracaro Aggiunta documentazione raccolta e
salvataggio informazioni da Github e
Confluence

0.0.8 2025-04-12 Nicolas Fracaro Valeri Mihail Belenkov Aggiunta sezioni: Intorduzione
microservizio Informazioni, Recupero
informazioni dei dati da Jira e Recupero
delle informazioni rilevanti basato su query
dell’utente

0.0.7 2025-04-10 Davide Benedetti Mouad Mahdi Stesura tracciamento stato requisiti
funzionali

0.0.6 2025-04-09 Andrea Santi Mouad Mahdi Stesura microservizio denominato «Storico»

0.0.5 2025-04-08 Davide Benedetti Nicolas Fracaro Aggiunta sezione microservizio ChatBot

0.0.4 2025-04-03 Nicolas Fracaro Andrea Santi Sezione architettura di sistema e
introduzione backend

0.0.3 2025-03-27 Orlando Ferazzani Matteo Campagnaro Aggiunte tecnologie di testing e
miglioramenti generali

0.0.2 2025-03-15 Orlando Ferazzani Matteo Campagnaro Aggiunta sezione «Architettura frontend»

0.0.1 2025-02-27 Mouad Mahdi Davide Benedetti Stesura sezione microservizio Api-Gateway

2 / 72

Specifica Tecnica

Indice
1) Introduzione . 8

1.1) Scopo del documento . 8
1.2) Scopo del prodotto . 8
1.3) Miglioramenti e maturità . 8
1.4) Glossario . 8
1.5) Riferimenti . 9

1.5.1) Riferimenti normativi . 9
1.5.2) Riferimenti informativi . 9
1.5.3) Riferimenti Tecnici . 9

2) Tecnologie . 9
2.1) Tecnologie di sviluppo . 10

2.1.1) Typescript . 10
2.1.2) Langchain . 10
2.1.3) Node.js . 10
2.1.4) Nest.js . 10
2.1.5) GroqCloud . 10
2.1.6) Qdrant . 11
2.1.7) NomicAi . 11
2.1.8) PostgreSQL . 11
2.1.9) Octokit . 11
2.1.10) JiraJs . 11
2.1.11) ConfluenceJs . 11
2.1.12) Docker . 12
2.1.13) React.js . 12
2.1.14) ReactQuery . 12
2.1.15) TailwindCSS . 12
2.1.16) Next.js . 12
2.1.17) ShadCn . 12
2.1.18) LucideReact . 13

2.2) Tecnologie di testing . 13
2.2.1) Jest . 13
2.2.2) ESLint . 13

3) Architettura di Sistema . 14
3.1) Approccio alla Progettazione . 14
3.2) Contenitori e Deploy con Docker . 14

4) Architettura di sistema . 14
4.1) Strutturazione Generale del Sistema . 14
4.2) Architettura del frontend . 14
4.3) Architettura del Backend . 15

4.3.1) Architettura di Deployment . 15
4.3.1.1) Vantaggi dell’architettura a microservizi . 15
4.3.1.2) Svantaggi . 15
4.3.1.3) Microservizi Identificati . 15
4.3.1.4) Comunicazione tra Microservizi: RabbitMQ . 15

4.3.1.4.1) Pattern e implementazione . 16
4.3.2) Architettura logica . 16

4.3.2.1) Struttura dell’architettura esagonale . 16

3 / 72

Specifica Tecnica

4.3.2.2) Vantaggi . 16
4.3.3) Design pattern utilizzati . 17

4.3.3.1) Dependency Injection . 17
5) Progettazione di dettaglio . 18

5.1) Progettazione frontend . 18
5.2) Architettura nel dettaglio . 19

5.2.1) Componenti . 19
5.2.2) Struttura dei dati . 20
5.2.3) Gestione dello stato e del tema . 22
5.2.4) Gestione e adattamento dei dati per la chat . 26

5.3) Microservizio Api-Gateway . 29
5.3.1) Risposta Use-Case: . 30
5.3.2) Storico Use-Case: . 31
5.3.3) Scheduling del Fetch: . 32

5.4) Microservizio Chatbot . 34
5.4.1) Architettura e Componenti . 34

5.4.1.1) Domain Layer . 34
5.4.1.2) Application Layer . 35
5.4.1.3) Adapters Layer . 35
5.4.1.4) Infrastructure Layer . 35

5.4.2) Flusso Principale di Elaborazione . 36
5.4.3) Componenti Principali . 37

5.4.3.1) Controllers . 37
5.4.3.2) Use Cases e Ports . 37
5.4.3.3) Services . 37
5.4.3.4) Adapters . 38
5.4.3.5) Entità e Value Objects . 39

5.4.4) Integrazione con LangChain e Groq . 40
5.4.5) Comunicazione con Altri Microservizi . 41
5.4.6) Configurazione e Ambiente . 42
5.4.7) Conclusione . 42

5.5) Microservizio Storico Chat . 43
5.5.1) Quattro casi d’uso . 44
5.5.2) Recupero dello Storico della Chat . 44
5.5.3) Inserimento di nuovi messaggi . 47
5.5.4) Inserimento dell’ultima data di recupero informazioni . 49
5.5.5) Ottenimento della data di ultimo recupero / aggiornamento informazioni 51

5.6) Microservizio Informazioni . 52
5.6.1) Funzionalità principali . 52
5.6.2) Classi condivise . 52

5.6.2.1) Qdrant-information-repository . 52
5.6.2.2) Metadata . 53
5.6.2.3) Information . 53
5.6.2.4) InformationEntity . 53
5.6.2.5) MetadataEntity . 53
5.6.2.6) Result . 53

5.6.3) Recupero e memorizzazione dei dati da GitHub . 53
5.6.3.1) FetchGithubDTO . 55
5.6.3.2) RepoDTO . 55

4 / 72

Specifica Tecnica

5.6.3.3) GithubCmd . 56
5.6.3.4) RepoCmd . 56
5.6.3.5) Commit . 56
5.6.3.6) File . 57
5.6.3.7) PullRequest . 57
5.6.3.8) CommentPR . 58
5.6.3.9) Repository . 58
5.6.3.10) Workflow . 58
5.6.3.11) WorkflowRun . 59
5.6.3.12) GithubFetchAndStoreController . 59
5.6.3.13) GithubUseCase . 59
5.6.3.14) GithubService . 59
5.6.3.15) GithubCommitAPIPort . 60
5.6.3.16) GithubFileAPIPort . 60
5.6.3.17) GithubPullRequestAPIPort . 60
5.6.3.18) GithubRepositoryAPIPort . 60
5.6.3.19) GithubWorkflowAPIPort . 60
5.6.3.20) GithubAPIAdapter . 60
5.6.3.21) GithubAPIRepository . 61
5.6.3.22) GithubStoreInfoPort . 61
5.6.3.23) GithubStoreInfoAdapter . 61

5.6.4) Recupero e memorizzazione dei dati da Confluence . 61
5.6.4.1) ConfluenceController . 61
5.6.4.2) ConfluenceUseCase . 62
5.6.4.3) ConfluenceService . 62
5.6.4.4) ConfluenceDocument . 62
5.6.4.5) ConfluenceAPIPort . 62
5.6.4.6) ConfluenceAPIAdapter . 62
5.6.4.7) ConfluenceAPIRepository . 62
5.6.4.8) ConfluenceStorePort . 62
5.6.4.9) ConfluenceStoreAdapter . 63

5.6.5) Recupero e memorizzazione dei dati da Jira . 63
5.6.5.1) Componenti Principali . 63

5.6.5.1.1) JiraFetchAndStoreController . 64
5.6.5.1.2) JiraUseCase . 64
5.6.5.1.3) JiraService . 64
5.6.5.1.4) Ticket . 64
5.6.5.1.5) JiraComment . 64
5.6.5.1.6) JiraAPIPort . 64
5.6.5.1.7) JiraAPIAdapter . 64
5.6.5.1.8) JiraAPIRepository . 64
5.6.5.1.9) StoreJiraPort . 65
5.6.5.1.10) StoreJiraAdapter . 65

5.6.6) Recupero di informazioni rilevanti basato sulle query utente . 65
5.6.6.1) Componenti Principali . 66

5.6.6.1.1) RetrievalController . 66
5.6.6.1.2) RetrievalInfoUseCase . 66
5.6.6.1.3) RetrievalInfoService . 67
5.6.6.1.4) RetrieveCmd . 67

5 / 72

Specifica Tecnica

5.6.6.1.5) RetrievalInfoPort . 67
5.6.6.1.6) RetrievalInfoAdapter . 67

6) Tracciamento requisiti . 68
6.1) Stato dei requisiti funzionali . 68
6.2) Grafici riassuntivi . 72

6 / 72

Specifica Tecnica

Lista della immagini
Figura 1 Logo BuddyBot . 8
Figura 2 Logo Typescript . 10
Figura 3 Logo di Langchain . 10
Figura 4 Logo di Node.js . 10
Figura 5 Logo di Nest.js . 10
Figura 6 Logo di GroqCloud . 10
Figura 7 Logo di Qdrant . 11
Figura 8 Logo di NomicAi . 11
Figura 9 Logo di PostgreSQL . 11
Figura 10 Logo di Octokit . 11
Figura 11 Logo di JiraJs . 11
Figura 12 Logo di ConfluenceJs . 11
Figura 13 Logo di Docker . 12
Figura 14 Logo di ReactJs . 12
Figura 15 Logo di ReactQuery . 12
Figura 16 Logo di TailwindCSS . 12
Figura 17 Logo di Next.js . 12
Figura 18 Logo di ShadCn . 13
Figura 19 Logo di LucideReact . 13
Figura 20 Logo di Jest . 13
Figura 21 Logo di ESLint . 13
Figura 22 UML frontend . 18
Figura 23 Header della pagina in dark mode . 19
Figura 24 Navbar della pagina in dark mode . 19
Figura 25 ChatWindow della pagina in dark modse . 19
Figura 26 Chat della pagina in dark mode . 20
Figura 27 Diagramma UML del microservizio Api-Gateway . 29
Figura 28 UML ChatBot . 34
Figura 29 Progettazione del Microservizio Storico Chat . 43
Figura 30 Diagramma UML di dettaglio riguardo alla raccolta delle informazioni di Github 53
Figura 31 Diagramma UML di dettaglio riguardo al salvataggio delle informazioni di Github 54
Figura 32 Diagramma UML di dettaglio riguardo a Confluence . 61
Figura 33 Diagramma delle classi per il caso d'uso di recupero e memorizzazione dei ticket di Jira . 63
Figura 34 Diagramma delle classi per il caso d'uso di recupero di informazioni rilevanti basato sulle

query utente . 65
Figura 35 Stato dei requisiti funzionali obbligatori . 72
Figura 36 Stato dei requisiti funzionali opzionali . 72
Figura 37 Stato dei requisiti funzionali desiderabili . 72

7 / 72

Specifica Tecnica

1) Introduzione

1.1) Scopo del documento

Il presente documento ha lo scopo di fungere da risorsa esaustiva per la spiegazione e conseguente
comprensione degli aspetti tecnici del progetto :

Figura 1: Logo BuddyBot

La sua finalità primaria è quella di fornire una panoramica dettagliata e approfondita delle scelte
progettuali, architetturali e tecnologiche del sistema sviluppato. In particolare, si intende fornire
un’analisi profonda estesa al livello di progettazione più basso, includendo spiegazione, definizione e
motivazione delle scelte effettuate, e dei design patternG adottati.

Il documento ha quindi scopi molteplici:

• Motivare le scelte progettuali e di sviluppo adottate;
• Fungere da guida per il processo di sviluppo e manutenzione del sistema;
• Fornire una vista panoramica e monitorare la Code CoverageG dei requisiti del progetto identificati

nel documento Analisi dei Requisiti (visionabile qui);

L’adeguatezza e la completezza del documento (e del progetto) sono in costante evoluzione e miglio-
ramento in base ai feedbackG ricevuti e sulla base dell’aggiornamento dei requisiti.

1.2) Scopo del prodotto

L’obiettivo del progetto è la realizzazione di un chatbotG sotto forma di Web AppG atto a fornire
un supporto al team di nella gestione delle attività di un progetto in corso di sviluppo.
Nella fattispecie, il chatbot utilizza delle APIG e un modello di LLMG per, rispettivamente, reperire
informazioni da sistemi esterni utilizzati dall’azienda (più specificatamente, Jira, GitHub e Confluence)
e elaborare una risposta. Questa risposta può contenere del semplice testo, un link o un code blockG. Il
chatbot ha una singola sessione per ogni utente, e può essere utilizzato da più utenti contemporanea-
mente.

Il team è confidente che questo genere di prodotto migliorerà il workflow del team di ,
riducendo i tempi di risposta e migliorando la qualità del lavoro svolto.

1.3) Miglioramenti e maturità

Questo documento è redatto con approccio incrementale e modificato nel tempo per riflettere
l’andamento del progetto e le decisioni prese. In particolare, il documento è soggetto a modifiche in
base ai feedback ricevuti e all’evoluzione dei requisiti del progetto. Per questo motivo, il documento
non è considerabile definitivo, esaustivo e completo fino al raggiungimento di una versione stabile
dello stesso (1.0.0 o superiore).

1.4) Glossario

Per evitare ambiguità e incomprensione riguardanti la terminologia tecnica utilizzata nel documento,
viene redatto e adottato un Glossario contenente le definizioni dei termini tecnici utilizzati. Il Glossario
è consultabile qui e i termini presenti nel documento sono evidenziati con questo stileG.

8 / 72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#design-pattern
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#code-coverage
https://sweetenteam.github.io/docs/intro
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#feedback
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#chatbot
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#web-app
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#api
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#llm
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#code-block
https://sweetenteam.github.io/docs/RTB/glossario

Specifica Tecnica

1.5) Riferimenti

1.5.1) Riferimenti normativi

• Presentazione pdf del capitolato C9: C9p.pdf (versione disponibile al 2025-03-20)
• Norme di Progetto: Norme_di_Progetto_v1.0.0.pdf
• Piano di Qualifica: Piano_di_Qualifica_v1.0.0.pdf

1.5.2) Riferimenti informativi

• Analisi dei Requisiti: Analisi_dei_Requisiti_v1.1.0.pdf
• Glossario: Glossario
• I diagrammi dei casi d’uso: Use case
• Progettazione: I pattern architetturali Software Architecture Patterns
• Verifica e validazione: analisi statica (T10): analisi statica
• Verifica e validazione: analisi dinamica aka testing (T11): analisi dinamica
• Programmazione: SOLID programming principles

1.5.3) Riferimenti Tecnici

• Documentazione ufficiale Typescript: Typescript
• Documentazione ufficiale Langchain: Langchain
• Documentazione ufficiale NodeJs: Node.js
• Documentazione ufficiale NestJs: Nest.js
• Documentazione ufficiale Groq: GroqCloud
• Documentazione ufficiale Qdrant: Qdrant
• Documentazione ufficiale NomicAi: NomicAi
• Documentazione ufficiale PostgreSQL: PostgresSQL
• Documentazione ufficiale Oktokit: Octokit
• Documentazione JiraJs: JiraJs
• Documentazione Confluence Js: ConfluenceJs
• Documentazione ufficiale Docker: Docker
• Documentazione ufficiale ReactJs: React
• Documentazione ufficiale ReactQuery (TanStack) ReactQuery
• Documentazione ufficiale TailwindCSS: Tailwind CSS
• Documentazione ufficiale NextJs Next.js

2) Tecnologie

In questo capitolo sono elencate tutte le tecnologie della tech stackG che il team utilizza per lo sviluppo
del progetto di , come linguaggi di programmazione, frameworkG, librerieG e ambienti
di sviluppoG.

9 / 72

https://www.math.unipd.it/~tullio/IS-1/2024/Progetto/C9p.pdf
https://sweetenteam.github.io/pdf/documentazione_interna/rtb/Norme_di_Progetto_v1.0.0.pdf
https://sweetenteam.github.io/pdf/documentazione_esterna/rtb/Piano_di_Qualifica_v1.0.0.pdf
https://sweetenteam.github.io/pdf/documentazione_esterna/rtb/Analisi_dei_Requisiti_v1.1.0.pdf
https://sweetenteam.github.io/docs/RTB/Glossario
https://www.math.unipd.it/~rcardin/swea/2022/Diagrammi%20Use%20Case.pdf
https://www.math.unipd.it/~rcardin/swea/2022/Software%20Architecture%20Patterns.pdf
https://www.math.unipd.it/~tullio/IS-1/2023/Dispense/T10.pdf 2024/03/02)
https://www.math.unipd.it/~tullio/IS-1/2023/Dispense/T11.pdf 2024/03/02)
https://www.math.unipd.it/~tullio/IS-1/2023/Dispense/L02.pdf
https://www.typescriptlang.org/
https://langchain.io/
https://nodejs.org/
https://nestjs.com/
https://groq.com/
https://www.qdrant.io/
https://nomic.ai/
https://www.postgresql.org/
https://octokit.github.io/rest.js/v18
https://mrrefactoring.github.io/jira.js/
https://mrrefactoring.github.io/confluence.js/
https://www.docker.com/
https://reactjs.org/
https://react-query.tanstack.com/
https://tailwindcss.com/
https://nextjs.org/
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#tech-stack
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#framework
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#librerie
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#ambienti-di-sviluppo
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#ambienti-di-sviluppo

Specifica Tecnica

2.1) Tecnologie di sviluppo

2.1.1) Typescript

Typescript è un linguaggio di programmazione open-source. È un super-set di JavaScript, che aggiunge
forte tipizzazione statica. Il team ha scelto di utilizzare Typescript per la sua tipizzazione statica, che
permette di ridurre gli errori di programmazione e di rendere il codice più leggibile e manutenibile.

Figura 2: Logo Typescript

2.1.2) Langchain

Langchain è un framework open-source per la creazione di applicazioni basate sull’utilizzo LLMG. Il
team ha scelto di utilizzare Langchain per la sua facilità d’uso e per la sua integrazione con altri servizi
come Qdrant e Groq, oltre che ad avere una libreria in Typescript, rendendolo compatibile con il nostro
linguaggio.

Figura 3: Logo di Langchain

2.1.3) Node.js

Node.js è un ambiente di runtime open-source per l’esecuzione di codice JavaScript lato server. Il team
ha scelto di utilizzare Node.js per la sua scalabilità e per la sua facilità di utilizzo.

Figura 4: Logo di Node.js

2.1.4) Nest.js

Nest.js è un framework per la creazione di applicazioni server-side in Node.js. Il team ha scelto di
utilizzare Nest.js per la sua struttura modulare e per la sua scalabilità e per la facilità con cui è possibile
creare i design pattern più opportuni.

Figura 5: Logo di Nest.js

2.1.5) GroqCloud

È una piattaforma AI basata su hardware specializzato (LPU) per inferenza ad alte prestazioni, supporta
modelli LLM e integrazione con strumenti AI per elaborazione in tempo reale.

Figura 6: Logo di GroqCloud

10 / 72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#llm

Specifica Tecnica

2.1.6) Qdrant

Qdrant è un motore di ricerca e analisi di dati non strutturati, supporta l’indicizzazione e la ricerca di
dati in tempo reale, oltre che la ricerca di dati basata su vettori.

Figura 7: Logo di Qdrant

2.1.7) NomicAi

NomicAi è un servizio di elaborazione del linguaggio naturale (NLP) basato su modelli LLM che
permette l’embedding di testo. Il team ha scelto di utilizzare NomicAi per la sua facilità d’uso e per la
sua integrazione con altri servizi come Langchain e Groq.

Figura 8: Logo di NomicAi

2.1.8) PostgreSQL

PostgreSQL è un sistema di gestione di database relazionale open-source. Il team ha scelto di utilizzare
PostgreSQL per la sua affidabilità e per la sua estensiva documentazione.

Figura 9: Logo di PostgreSQL

2.1.9) Octokit

Octokit è un toolkit per l’interazione con le API di GitHub. Il team ha scelto di utilizzare Octokit per
la sua estesa documentazione e per utilizzare un prodott ufficiale per interagire on GitHub stesso.

Figura 10: Logo di Octokit

2.1.10) JiraJs

JiraJs è un toolkit per l’interazione con le API di Jira. Il team ha scelto di utilizzare JiraJs per la sua
documentazione affidabile e per la sua facilità d’uso.

Figura 11: Logo di JiraJs

2.1.11) ConfluenceJs

ConfluenceJs è un toolkit per l’interazione con le API di Confluence. Il team ha scelto di utilizzare
ConfluenceJs per la sua documentazione affidabile e per la sua facilità d’uso.

11 / 72

Specifica Tecnica

Figura 12: Logo di ConfluenceJs

2.1.12) Docker

Docker è una piattaforma open-source per lo sviluppo, il deploy e l’esecuzione di applicazioni in
container. Il team ha scelto di utilizzare Docker per la sua facilità di deploy e per la sua scalabilità.

Figura 13: Logo di Docker

2.1.13) React.js

ReactJs è una libreria open-source per la creazione di interfacce utente. Il team ha scelto di utilizzare
ReactJs per la sua immediatezza nell’uso, per la sua scalabilità e per la sua estesa documentazione.

Figura 14: Logo di ReactJs

2.1.14) ReactQuery

ReactQuery è una libreria open-source per la gestione dello stato in React. Il team ha scelto di utilizzare
ReactQuery per la sua integrazione con React.

Figura 15: Logo di ReactQuery

2.1.15) TailwindCSS

TailwindCSS è un framework CSS utilizzato per la creazione di interfacce utente. Il team ha scelto di
utilizzare TailwindCSS per la sua facilità d’uso e per la sua documentazione dettagliata oltre che per
utilizzare una tecnologia più compatibile con il resto.

Figura 16: Logo di TailwindCSS

2.1.16) Next.js

Next.js è un framework per la creazione di applicazioni web in React. Il team ha scelto di utilizzare
Next.js per i metodi nativi a disposizione per le richieste alle API e per utilizzare una tecnologia più
nuova rispetto al resto.

Figura 17: Logo di Next.js

2.1.17) ShadCn

12 / 72

Specifica Tecnica

Libreria di componenti pre-impostati, pronti all’uso e altamente customizzabili. Il team ha scelto di
utilizzare ShadCn per la sua facilità d’uso e per la sua documentazione dettagliata, oltre che per
sfruttare al massimo il principio del riuso.

Figura 18: Logo di ShadCn

2.1.18) LucideReact

Libreria di icone SVG pronte all’uso. Il team ha scelto di utilizzare LucideReact per la sua facilità d’uso
e per la sua documentazione dettagliata, oltre che per sfruttare al massimo il principio del riuso.

Figura 19: Logo di LucideReact

2.2) Tecnologie di testing

2.2.1) Jest

Jest è un framework di testing per JavaScript. Il team ha scelto di utilizzare Jest per la sua facilità
d’uso e per la sua integrazione con Typescript. Utilizzato per Analisi dinamica in quanto richiede
l’esecuzione del codice.

Figura 20: Logo di Jest

2.2.2) ESLint

ESLint è uno strumento di analisi statica del codice per identificare e segnalare errori di programma-
zione. Il team ha scelto di utilizzare ESLint per la sua facilità d’uso e per la sua integrazione con
Typescript. Utilizzato per Analisi statica in quanto non richiede l’esecuzione del codice.

Figura 21: Logo di ESLint

13 / 72

Specifica Tecnica

3) Architettura di Sistema

3.1) Approccio alla Progettazione

La progettazione dell’architettura di sistema di BuddyBot è stata condotta secondo un approccio
top-down. Questo metodo ha permesso di definire inizialmente i macro-componenti del sistema, garan-
tendo una visione chiara e coerente sin dalle prime fasi. Successivamente, si è passati a un raffinamento
progressivo delle specifiche dei singoli moduli e componenti, assicurando che ciascuno fosse progettato
in modo modulare e scalabile. Tale approccio ha facilitato la suddivisione delle responsabilità tra i
membri del team, migliorando la tracciabilità delle decisioni progettuali.

3.2) Contenitori e Deploy con Docker

Per garantire portabilità e facilitare il deploy, è stato adottato Docker e Docker Compose, con un
container per ogni servizio e per le risorse di supporto.

L’utilizzo di Docker porta molti vantaggi, tra cui:

• Isolamento dei servizi: Ogni microservizio gira in un ambiente indipendente, evitando conflitti tra
dipendenze.

• Portabilità: Il sistema può essere eseguito su qualsiasi piattaforma senza configurazioni complesse.
• Facilità di scalabilità: Può essere facilmente distribuito su più istanze per gestire carichi elevati.
• Coerenza ambientale: Assicura che gli ambienti di sviluppo, test e produzione siano identici,

riducendo i problemi legati a differenze di configurazione.

Docker Compose viene utilizzato per orchestrare e avviare automaticamente i container, garantendo
l’interconnessione tra i microservizi e i database senza necessità di configurazioni manuali complesse.

4) Architettura di sistema

4.1) Strutturazione Generale del Sistema

Il sistema è stato suddiviso in due macro-componenti principali:

• Frontend: Interfaccia utente per l’interazione con BuddyBot.
• Backend: Gestione della logica applicativa e delle fonti dati, esposto tramite API REST.

Questa suddivisione consente di ottenere diversi benefici:

• Indipendenza tra frontend e backend: Gli aggiornamenti possono avvenire separatamente, evitando
impatti sull’intero sistema.

• Possibilità di supportare frontend multipli: L’uso di API REST consente l’integrazione di differenti
interfacce utente, come web app, mobile app e desktop app (anche se attualmente non implementato,
questa architettura lo renderebbe facilmente realizzabile in futuro).

• Scalabilità e manutenibilità migliorate: Il backend può evolvere indipendentemente dall’interfaccia
utente, permettendo di migliorare le prestazioni senza dover aggiornare ogni client.

4.2) Architettura del frontend

Per la parte di frontend, il team ha utilizzato Next.JsG, framework basato su React, per la creazione
di pagine web. Next.Js è stato scelto per la sua facilità d’uso e per la sua scalabilità. Inoltre, il team ha
utilizzato TailwindCSSG per la creazione di interfacce utente. TailwindCSS è stato scelto per la sua

14 / 72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#next.js
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#tailwindcss

Specifica Tecnica

facilità d’uso e per la sua documentazione dettagliata, oltre che per la semplificazione della specificità
di CSS base.

La scelta di tali tecnologie ha portato il team ad uno sviluppo a componenti del frontend. Saranno
questi poi a comporre la struttura della web app. L’approccio a componenti, tipico di React, permette
una maggiore modularità e scalabilità del codice, oltre che ad una maggiore facilità di manutenzione,
evitando di avere tutto il codice in una singola pagina.

BuddyBot è una SPAG, ovvero una Single Page Application, che permette di avere una sola pagina
web che viene caricata una sola volta e che viene aggiornata dinamicamente senza dover ricaricare la
pagina. Questo permette di avere una maggiore velocità di caricamento e di navigazione all’interno
della web app. Inoltre, essendo un ChatBot, non vi era la necessità di avere più di una pagina, anche
se il team ha previsto la possibilità di aggiungere nuove pagine in futuro.

4.3) Architettura del Backend

4.3.1) Architettura di Deployment

Il backend è strutturato secondo un’architettura a microservizi, dove ogni servizio è responsabile di una
specifica funzionalità del sistema. Questo approccio ha permesso di ottenere un sistema più modulare
e scalabile, pur affrontando alcune sfide specifiche.

4.3.1.1) Vantaggi dell’architettura a microservizi

• Scalabilità orizzontale: I microservizi possono essere replicati per gestire carichi di lavoro elevati.
• Indipendenza di deploy: Ogni servizio può essere aggiornato, riavviato o sostituito senza impattare

il resto del sistema.
• Manutenibilità e modularità: Separare le funzionalità in microservizi facilita la gestione del codice e

l’aggiunta di nuove feature.
• Tecnologie eterogenee: Ogni microservizio può essere sviluppato con la tecnologia più adatta senza

vincoli imposti da un monolite.

4.3.1.2) Svantaggi

• Overhead di gestione: A differenza di un’architettura monolitica, i microservizi richiedono una
gestione più complessa, sia in fase di sviluppo che di deploy.

• Comunicazione tra servizi: Per garantire un’integrazione efficiente, è stato necessario implementare
un sistema di messaggistica asincrono, come RabbitMQ, per la comunicazione tra microservizi.

4.3.1.3) Microservizi Identificati

Il backend è suddiviso in quattro microservizi principali:

• API Gateway: Instrada le richieste tra frontend e microservizi interni, gestisce il bilanciamento del
carico e pianifica il recupero delle informazioni dalle fonti.

• Chatbot: Genera risposte basandosi sulle richieste ricevute e sulle informazioni contestuali fornite
dal database vettoriale.

• Storico: Salva e recupera le domande e le risposte dal database relazionale (PostgreSQL) per mante-
nere uno storico delle conversazioni.

• Information Vector DB: Recupera informazioni dalle fonti, effettua embedding in forma vettoriale
e le memorizza nel database vettoriale (Qdrant), fornendo dati contestuali al chatbot.

4.3.1.4) Comunicazione tra Microservizi: RabbitMQ

15 / 72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#spa

Specifica Tecnica

Nell’architettura a microservizi di BuddyBotG, la comunicazione efficiente tra componenti è garantita
da un sistema di messaggistica asincrona basato su RabbitMQ.

L’adozione di RabbitMQ offre benefici fondamentali:

• Flessibilità temporale: Determina quando un microservizio elabora una richiesta, eliminando
blocchi nell’esecuzione.

• Scalabilità orizzontale: I messaggi vengono distribuiti in code ed elaborati in parallelo.
• Resilienza avanzata: I messaggi persistono nelle code quando i servizi destinatari sono tempora-

neamente non disponibili.
• Disaccoppiamento: Riduce le dipendenze dirette tra microservizi, semplificando la manutenzione.

4.3.1.4.1) Pattern e implementazione

Il sistema utilizza principalmente il pattern RPC asincrono (Request/Response) per le comunica-
zioni tra i microservizi, sfruttando l’integrazione tra NestJS e RabbitMQ:

• NestJS gestisce automaticamente gli identificativi di correlazione tra richieste e risposte.
• Il framework @nestjs/microservices fornisce astrazioni per configurare microservizi basati su

code.
• Ogni microservizio implementa:

‣ Listener dedicati che si connettono a specifiche code RabbitMQ.
‣ Handler che associano pattern predefiniti alle funzioni di business logic.
‣ Client per pubblicare messaggi in modo asincrono.

4.3.2) Architettura logica

Il sistema è progettato seguendo l’architettura esagonale, un modello architetturale che crea una
separazione netta tra la business logic dell’applicazione e il mondo esterno, garantendo indipendenza
da tecnologie specifiche e maggiore manutenibilità.

4.3.2.1) Struttura dell’architettura esagonale

Logica di business rappresenta il nucleo dell’applicazione, contenente il dominio e le regole di busi-
ness. È completamente indipendente da implementazioni tecnologiche specifiche, garantendo massima
portabilità e riutilizzabilità.

Porte definiscono i punti di interazione tra il nucleo e il mondo esterno:
• Porte in Entrata (Use Case): Permettono ai componenti esterni di invocare il nucleo, fornendo un

accesso strutturato e proteggendo la logica di dominio da implementazioni specifiche.
• Porte in Uscita: Consentono al nucleo di accedere a funzionalità esterne (database, servizi di terze

parti) mantenendo l’astrazione tecnologica.

Services implementano le porte in entrata e fanno parte della business logic. Si concentrano esclusi-
vamente sulla logica di dominio, rimanendo indipendenti da aspetti tecnologici specifici.

Adapters costituiscono il livello più esterno dell’applicazione e si dividono in:
• Adapters in Entrata (Controller): Gestiscono e convertono le richieste provenienti dall’esterno

verso il core.
• Adapters in Uscita: Gestiscono la comunicazione dal core verso servizi e tecnologie esterne.

4.3.2.2) Vantaggi

Questa architettura garantisce:

16 / 72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#buddybot

Specifica Tecnica

• Flessibilità: L’applicazione rimane indipendente dalle tecnologie esterne, facilitando modifiche e
aggiornamenti senza impattare la logica di business.

• Testabilità: La logica di business può essere testata in isolamento, semplificando lo sviluppo test-
driven.

• Resilienza: Il sistema diventa più resistente ai cambiamenti tecnologici, permettendo di sostituire
componenti esterni senza modificare il nucleo applicativo.

4.3.3) Design pattern utilizzati

4.3.3.1) Dependency Injection

Uno degli aspetti fondamentali dell’implementazione del backend è stato l’uso del pattern di DepenD
dency Injection, nativamente supportato da NestJS. Questo approccio ha permesso di ridurre
l’accoppiamento tra i componenti, semplificando la testabilità e la manutenzione del sistema spostando
all’esterno della classi la risoluzione delle dipendenze.

NestJS adotta un container per le dipendenze che consente di dichiarare i provider una sola volta
e iniettarli ovunque siano richiesti tramite il costruttore delle classi. Ogni modulo dell’applicazione
può registrare provider, che vengono poi risolti automaticamente dal framework quando una classe
dichiara di averne bisogno.

17 / 72

Specifica Tecnica

5) Progettazione di dettaglio

5.1) Progettazione frontend

Figura 22: UML frontend

18 / 72

Specifica Tecnica

5.2) Architettura nel dettaglio

5.2.1) Componenti

Come detta lo standard di Next.JS, la pagina principale è page.tsx, che contiene la struttura base della
web app. All’interno di questa pagina, vengono poi importati i vari componenti che compongono la
web app. I componenti principali sono:

• Header.tsx è progettato per mostrare il logo e il nome dell’applicazione in modo ben visibile in cima
alla pagina, contribuendo immediatamente a definire l’identità visiva della web app.

Figura 23: Header della pagina in dark mode

• Navbar.tsx gestisce la navigazione; anche se BuddyBot è una Single Page Application, la navbar
offre all’utente la possibilità di accedere rapidamente ad altri siti web utili.

Figura 24: Navbar della pagina in dark mode

• ChatWindow.tsx integra due componenti distinti: il componente Chat.tsx per visualizzare lo storico
della conversazione e l’InputForm.tsx per l’inserimento dei messaggi, creando così un’unica area
interattiva per gestire la chat.

Figura 25: ChatWindow della pagina in dark modse
• Chat.tsx si occupa di mostrare l’intera conversazione tra utente e chatbot. Al suo interno, ogni

scambio è rappresentato da un componente ChatQA.tsx, che racchiude due Bubble.tsx: una per il
messaggio dell’utente e una per la risposta generata dal chatbot.

19 / 72

Specifica Tecnica

Figura 26: Chat della pagina in dark mode

Ci sono inoltre altre componenti, utilizzate a supporto dei componenti principali. Questi sono inclusi
nella cartella denimoinata ui. Queste componenti sono:

• Button.tsx;
• LoadMessage.tsx;
• LoadChat.tsx;
• ErrorAlert.tsx;
• InfoAlert.tsx;
• MarkDown.tsx;
• Avatar.tsx;
• MessageAvatar.tsx;

5.2.2) Struttura dei dati

Per sviluppare al meglio e più dettagliatamente il team ha definito dei tipi, che gestiscono diversi aspetti
della web app. Questi tipi sono definiti all’interno della cartella types e sono:

• Action.ts
Definisce le possibili azioni che la chat può eseguire (es. caricamento della cronologia, aggiunta di
messaggi, gestione degli errori).

1 import { Message } from "@/types/Message";
2 import { QuestionAnswer } from "./QuestionAnswer";
3

4 export type ChatAction =
5 | { type: "LOAD_HISTORY_START" }

6
 | { type: "LOAD_HISTORY_SUCCESS"; payload: QuestionAnswer[], hasMore:
boolean }

7 | { type: "LOAD_HISTORY_ERROR", error: number }
8 | { type: "ADD_MESSAGE_START"; id: string, question: Message }

9
 | { type: "ADD_MESSAGE_SUCCESS"; id: string, answer: Message, newid: string,
lastUpdated: string }

10 | { type: "ADD_MESSAGE_ERROR"; id: string, error: number }
11 | { type: "SCROLL_DOWN" };

20 / 72

Specifica Tecnica

• ChatContext.ts
Definisce il contesto della chat, includendo lo stato, il dispatch e le funzioni per il caricamento della
cronologia e l’invio dei messaggi.

1 import { createContext } from "react";
2 import { ChatAction } from "./Action";
3 import { ChatState } from "./ChatState";
4

5 export interface ChatContext {
6 state: ChatState;
7 dispatch: React.Dispatch<ChatAction>;
8 loadHistory: () => Promise<void>;
9 sendMessage: (text: string) => Promise<void>;

10 }
11

12 export const ChatContext = createContext<ChatContext | undefined>(undefined);

• ChatProviderProps.ts
Specifica le proprietà richieste al provider della chat, inclusa la dipendenza dall’adapter.

1 import { Target } from "@/adapters/Target";
2 import { ReactNode } from "react";
3

4 export interface ChatProviderProps {
5 children: ReactNode;
6 adapter: Target;
7 }

• ChatState.ts
Descrive lo stato della chat e definisce lo stato iniziale.

1 import { QuestionAnswer } from "./QuestionAnswer";
2

3 export interface ChatState {
4 messages: QuestionAnswer[];
5 loadingHistory: boolean;
6 errorHistory: number;
7 hasMore: boolean;
8 hasToScroll: boolean;
9 }

10

11 export const initialState: ChatState = {
12 messages: [],
13 loadingHistory: true,
14 errorHistory: 0,
15 hasMore: false,
16 hasToScroll: false,
17 };

• CustomError.ts
Definisce un errore personalizzato con un codice e dettagli opzionali, migliorando la gestione e il
tracciamento degli errori.

1 export class CustomError extends Error {
2 public code: number;
3 public details?: any;
4

5 constructor(code: number, message: string, details?: any) {

21 / 72

Specifica Tecnica

6 super(message);
7 this.code = code;
8 this.details = details;
9 Object.setPrototypeOf(this, CustomError.prototype);

10 }
11 }

• Message.ts
Rappresenta un singolo messaggio con il contenuto e il timestamp.

1 export interface Message {
2 content: string;
3 timestamp: string;
4 }

• QuestionAnswer.ts
Modella la struttura per una domanda e la sua risposta, includendo flag per errori e stato di carica-
mento

1 import { Message } from "./Message";
2

3 export interface QuestionAnswer {
4 id: string;
5 question: Message;
6 answer: Message;
7 error: number;
8 loading: boolean;
9 lastUpdated: string;

10 }

5.2.3) Gestione dello stato e del tema

Il frontend di BuddyBot inoltre utilizza un Reducer e due Providers che sono utilizzati per separare
la logica e gestire lo stato in modo efficiente.

• Il ThemeProvider gestisce il tema visivo dell’applicazione, permettendo di applicare facilmente
modalità chiare o scure (dark/light mode). Utilizzando il contesto di next-themes, consente a tutti
i componenti dell’app di accedere e aggiornare dinamicamente il tema senza dover modificare
manualmente ogni singolo elemento, migliorando l’esperienza utente e semplificando la gestione del
design. Questo provider viene utilizzato all’interno del file layout.tsx.

1 "use client";
2

3 import React from "react";

4
import { ThemeProvider as NextThemesProvider, ThemeProviderProps } from "next-
themes";

5

6 export function ThemeProvider({ children, ...props }: ThemeProviderProps) {
7 return (
8 <NextThemesProvider {...props}>
9 {children}

10 </NextThemesProvider>
11);
12 }

22 / 72

Specifica Tecnica

• Il ChatProvider è un provider che incapsula lo stato e le funzioni per gestire la chat, come il
caricamento della cronologia e l’invio di messaggi. Utilizza il useReducer per gestire lo stato della
chat, che include i messaggi, lo stato di caricamento, e gli errori. Ogni azione (come l’aggiunta di un
messaggio o il caricamento della cronologia) è gestita tramite un tipo di azione definito nel reducer,
che aggiorna lo stato in base al tipo di azione ricevuta. Questo provider viene utilizzato all’interno
del file ChatWindow.tsx.

1 import React from "react";
2 import { useContext, useReducer, useEffect } from "react";
3 import { chatReducer } from "@/reducers/chatReducer";
4 import { initialState } from "@/types/ChatState";
5 import { Message } from "@/types/Message";
6 import { QuestionAnswer } from "@/types/QuestionAnswer";
7 import { generateId } from "@/utils/generateId";
8 import { ChatContext } from "@/types/ChatContext";
9 import { ChatProviderProps } from "@/types/ChatProviderProps";

10 import { CustomError } from "@/types/CustomError";
11

12 export const ChatProvider = ({ children, adapter }: ChatProviderProps) => {
13 const [state, dispatch] = useReducer(chatReducer, initialState);
14

15 const loadHistory = async (): Promise<void> => {
16 dispatch({ type: "LOAD_HISTORY_START" });
17 try {
18 if (state.messages.length === 0) {

19
 const olderMessages: QuestionAnswer[] = await
adapter.requestHistory("", 10);

20 for (let i = 0; i < olderMessages.length; i++) {
21 if (olderMessages[i].answer.content.length > 100000) {
22 olderMessages[i].error = 1;
23 }
24 }

25
 dispatch({ type: "LOAD_HISTORY_SUCCESS", payload: olderMessages,
hasMore: !(olderMessages.length < 10) });

26

27 dispatch({ type: "SCROLL_DOWN" });
28 }
29 else {

30
 const olderMessages: QuestionAnswer[] = await
adapter.requestHistory(state.messages[0].id, 10);

31
 dispatch({ type: "LOAD_HISTORY_SUCCESS", payload: olderMessages,
hasMore: !(olderMessages.length < 10) });

32 }
33 }
34 catch (error) {

35
 if (error instanceof CustomError) dispatch({ type: "LOAD_HISTORY_ERROR",
error: error.code });

36 else dispatch({ type: "LOAD_HISTORY_ERROR", error: 500 });
37 }
38 };
39

40 const sendMessage = async (text: string) => {
41 const id = generateId();
42 const newMessage: Message = {
43 content: text,
44 timestamp: new Date().toISOString(),
45 };
46

47 dispatch({ type: "ADD_MESSAGE_START", id: id, question: newMessage });
48 dispatch({ type: "SCROLL_DOWN" });
49 try {

23 / 72

Specifica Tecnica

50
 const botResponse: { answer: Message, id: string, lastUpdated: string } =
await adapter.requestAnswer(newMessage);

51
 if (botResponse.answer.content.length > 100000) dispatch({ type:
"ADD_MESSAGE_ERROR", id: id, error: 1 });

52

 else dispatch({ type: "ADD_MESSAGE_SUCCESS", id: id, answer:
botResponse.answer, newid: botResponse.id, lastUpdated:
botResponse.lastUpdated });

53

54 }
55 catch (error) {

56
 if (error instanceof CustomError) dispatch({ type: "ADD_MESSAGE_ERROR",
id: id, error: error.code });

57 else dispatch({ type: "ADD_MESSAGE_ERROR", id: id, error: 501 });
58 }
59 };
60

61 useEffect(() => {
62 loadHistory();
63 }, []);
64

65 return (

66
 <ChatContext.Provider value={{ state, dispatch, loadHistory, sendMessage }}
>

67 {children}
68 </ChatContext.Provider>
69);
70 };
71

72 // Hook per usare il contesto
73 export const useChat = () => {
74 const context = useContext(ChatContext);
75 if (!context) {
76 throw new Error("useChat must be used within a ChatProvider");
77 }
78 return context;
79 };

• Il chatReducer gestisce lo stato della chat, aggiornandolo in base alle azioni ricevute, come il carica-
mento della cronologia o l’aggiunta di nuovi messaggi. La sua struttura modulare e centralizzata
consente una gestione più chiara e prevedibile dello stato, migliorando la manutenibilità e la scala-
bilità dell’applicazione. Separando la logica di aggiornamento dello stato dalla UI, il reducer facilita
l’implementazione di nuove funzionalità senza compromettere la coerenza del sistema, rendendo
l’app più facilmente estensibile e mantenibile nel tempo.

1 import { Message } from "@/types/Message";
2 import { ChatState } from "@/types/ChatState";
3 import { ChatAction } from "@/types/Action";
4

5
export const chatReducer = (state: ChatState, action: ChatAction): ChatState =>
{

6 switch (action.type) {
7 case "LOAD_HISTORY_START":
8 return {
9 ...state,

10 loadingHistory: true,
11 errorHistory: 0,
12 hasMore: false,
13 };
14 case "LOAD_HISTORY_SUCCESS":

24 / 72

Specifica Tecnica

15 return {
16 ...state,
17 messages: [...action.payload, ...state.messages],
18 loadingHistory: false,
19 errorHistory: 0,
20 hasMore: action.hasMore,
21 };
22 case "LOAD_HISTORY_ERROR":
23 return {
24 ...state,
25 loadingHistory: false,
26 errorHistory: action.error,
27 hasMore: false,
28 };
29 case "ADD_MESSAGE_START":
30 return {
31 ...state,

32

 messages: [...state.messages, { id: action.id, question:
action.question, answer: {} as Message, error: 0, loading: true, lastUpdated:
new Date().toISOString() }],

33 };
34 case "ADD_MESSAGE_SUCCESS":
35 const updatedMessagesSuccess = state.messages.map((msg) => {
36 if (msg.id === action.id) {
37 return {
38 ...msg,
39 id: action.newid,
40 answer: action.answer,
41 loading: false,
42 error: 0,
43 lastUpdated: action.lastUpdated,
44 };
45 }
46 return msg;
47 });
48 return {
49 ...state,
50 messages: updatedMessagesSuccess,
51 };
52 case "ADD_MESSAGE_ERROR":
53 const updatedMessagesError = state.messages.map((msg) => {
54 if (msg.id === action.id) {
55 return {
56 ...msg,
57 loading: false,
58 error: action.error,
59 };
60 }
61 return msg;
62 });
63 return {
64 ...state,
65 messages: updatedMessagesError,
66 };
67 case "SCROLL_DOWN":
68 return {
69 ...state,
70 hasToScroll: !state.hasToScroll,
71 };
72 default:
73 return state;

25 / 72

Specifica Tecnica

74 }
75 };

5.2.4) Gestione e adattamento dei dati per la chat

Nel frontend di BuddyBot viene utilizzato il design pattern Adapter per gestire la comunicazione con
le API e adattare i dati in un formato utilizzabile dall’applicazione.

• Il Adapter.ts implementa il pattern Adapter, che si occupa di adattare i dati ricevuti dalle API al
formato richiesto dall’applicazione. Gestisce le richieste per la cronologia della chat e per ottenere
le risposte alle domande, restituendo i dati come oggetti compatibili con il modello dell’app, come
QuestionAnswer e Message. Le funzioni requestHistory e requestAnswer si occupano rispettiva-
mente di recuperare la cronologia e le risposte, mentre i metodi privati all’interno dell’adapter
trasformano i dati ricevuti in un formato che l’app può utilizzare facilmente.

1 import { QuestionAnswer } from "@/types/QuestionAnswer";
2 import { Message } from "@/types/Message";
3 import { Target } from "./Target";
4 import { Adaptee } from "./Adaptee";
5 import { generateId } from "@/utils/generateId";
6 import { CustomError } from "@/types/CustomError";
7

8 export class Adapter implements Target {
9 private adaptee: Adaptee;

10

11 constructor() {
12 this.adaptee = new Adaptee();
13 }
14

15
 async requestHistory(id: string, offset: number): Promise<QuestionAnswer[]>
{

16 try {
17 const jsonResponse = await this.adaptee.fetchHistory(id, offset);
18 return this.adaptQuestionAnswerArray(jsonResponse);
19 } catch (error) {
20 if (error instanceof CustomError) throw error;
21 throw new CustomError(500, "SERVER", "Errore interno del server");
22 }
23 }

24
 async requestAnswer(question: Message): Promise<{ answer: Message; id:
string; lastUpdated: string }> {

25 try {

26
 const answer = await
this.adaptee.fetchQuestion(this.adaptMessageToJSON(question));

27 return {
28 answer: this.adaptMessage(answer.answer),
29 id: answer.id,
30 lastUpdated: answer.lastUpdated,
31 };
32 } catch (error) {
33 if (error instanceof CustomError) throw error;
34 throw new CustomError(501, "SERVER", "Errore interno del server");
35 }
36 }
37

38 private adaptMessage(data: any): Message {
39 return {
40 content: data.content,
41 timestamp: data.timestamp,

26 / 72

Specifica Tecnica

42 };
43 };
44

45 private adaptQuestionAnswer(data: any): QuestionAnswer {
46 return {
47 id: data.id || generateId(),
48 question: this.adaptMessage(data.question),
49 answer: this.adaptMessage(data.answer),
50 error: 0,
51 loading: false,
52 lastUpdated: data.lastUpdated,
53 };
54 };
55

56 private adaptQuestionAnswerArray(dataArray: any[]): QuestionAnswer[] {
57 return dataArray.map(data => this.adaptQuestionAnswer(data));
58 };
59

60 private adaptMessageToJSON(question: Message): any {
61 return {
62 text: question.content,
63 date: question.timestamp,
64 };
65 };
66 }

• Il Adaptee.ts Nasconde la complessità delle chiamate di rete e fornisce metodi semplificati per
ottenere la cronologia della chat e risposte alle domande, gestendo internamente i dettagli delle
comunicazioni con con l’API Gateway.

1 import { CustomError } from "@/types/CustomError";
2

3 export class Adaptee {
4 async fetchHistory(id: string, offset: number): Promise<any[]> {
5 const controller = new AbortController();
6 const timeoutId = setTimeout(() => controller.abort(), 25000);
7

8 try {

9
 const response = await fetch(`http://${process.env.API_GATEWAY ??
'localhost'}/api/get-storico?id=${id}&num=${offset}`, {

10 method: "GET",
11 headers: {
12 "Content-Type": "application/json",
13 },
14 signal: controller.signal,
15 });
16 clearTimeout(timeoutId);

17
 if (response.status >= 500) throw new CustomError(500, "SERVER",
"Errore interno del server");

18
 if (response.status >= 400) throw new CustomError(400,
"CONNESSIONE", "Errore interno del server");

19
 if (!response.ok) throw new CustomError(500, "SERVER", "Errore
interno del server");

20 return await response.json();
21 } catch (error) {
22 clearTimeout(timeoutId);

23
 if (error instanceof DOMException && error.name === "AbortError")
throw new CustomError(408, "TIMEOUT", "Timeout della richiesta");

24
 if (error instanceof TypeError && error.message === "Failed to
fetch") throw new CustomError(400, "CONNESSIONE", "Errore di connessione");

27 / 72

Specifica Tecnica

25 if (error instanceof CustomError) throw error;
26 throw new CustomError(500, "SERVER", "Errore interno del server");
27 }
28 }
29

30 async fetchQuestion(data: any): Promise<any> {
31 const controller = new AbortController();
32 const timeoutId = setTimeout(() => controller.abort(), 20000);
33

34 try {

35
 const response = await fetch(`http://${process.env.API_GATEWAY ??
'localhost'}/api/get-risposta`, {

36 method: "POST",
37 headers: {
38 "Content-Type": "application/json",
39 },
40 body: JSON.stringify(data),
41 signal: controller.signal,
42 });
43 clearTimeout(timeoutId);

44
 if (response.status >= 500) throw new CustomError(501, "SERVER",
"Errore interno del server");

45
 if (response.status >= 400) throw new CustomError(401,
"CONNESSIONE", "Errore interno del server");

46
 if (!response.ok) throw new CustomError(501, "SERVER", "Errore
interno del server");

47 return await response.json();
48 } catch (error) {
49 clearTimeout(timeoutId);

50
 if (error instanceof DOMException && error.name === "AbortError")
throw new CustomError(409, "TIMEOUT", "Timeout della richiesta");

51
 if (error instanceof TypeError && error.message === "Failed to
fetch") throw new CustomError(401, "CONNESSIONE", "Errore di connessione");

52 if (error instanceof CustomError) throw error;
53 throw new CustomError(501, "SERVER", "Errore interno del server");
54 }
55 }
56 }

28 / 72

Specifica Tecnica

5.3) Microservizio ApiDGateway

Figura 27: Diagramma UML del microservizio Api-Gateway

Il microservizio API Gateway svolge un ruolo cruciale nell’architettura di BuddyBotG, fungendo da
punto di ingresso centralizzato per tutte le richieste provenienti dal front-endG e indirizzandole verso
i microservizi appropriati, garantendo il routing delle richieste e la gestione delle risposte.

Come per gli altri microservizi, anche l’API Gateway è stato progettato secondo i principi
dell’architettura esagonale, al fine di garantire una netta separazione tra la logica di business e
le applicazioni esterne. L’obiettivo è quello di mantenere il sistema flessibile, testabile e facilmente
manutenibile.

In particolare, l’API Gateway interagisce con i microservizi tramite porte e adattatori dedicati,
utilizzando Rest-ApiG per comunicare con il front-endG e RabbitMQG per la messaggistica con gli

29 / 72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#buddybot
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#front-end
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#rest-api
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#front-end
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#rabbitmq

Specifica Tecnica

altri microservizi. Questo approccio consente di mantenere l’API Gateway completamente agnostico
rispetto ai dettagli di implementazione dei microservizi, favorendo una maggiore scalabilità nel futuro.

Compiti dell’API gateway:
• comunicazione attraverso Rest-ApiG con il front-end (@Get('get-storico') e @Post('get-
risposta'));

• instradamento delle richieste ai microservizi appropriati (Storico, ChatBot e Information):
‣ recupero di nuova risposta dal servizio di Chatbot;
‣ recupero dello storico dal servizio di Storico;
‣ scheduling del fetch delle informazioni nel microservizio «Information».

5.3.1) Risposta UseDCase:

L’endpoint “get-risposta” riceve dal front-endG una richiesta @Post('get-risposta') contenente il
corpo «(text)» e la data «(date)» della domanda,

1
async getRisposta(@Body('text') text: string, @Body('timestamp') timestamp:
string): Promise<ChatDTO>

all’interno di un

1 export class ReqAnswerDTO {
2 constructor(
3 public readonly text: string,
4 public readonly date: string
5) {}
6 }

e restituisce un oggetto «ChatDTO» contenente la risposta dalla domanda posta.

1 import { MessageDto } from "./message.dto";
2 export class ChatDTO {
3 constructor(
4 public readonly id: string,
5 public readonly question: MessageDto,
6 public readonly answer: MessageDto,
7 public readonly lastUpdate: string,
8) {}
9 }

10

11 export class MessageDto {
12 constructor(
13 public readonly content: string,
14 public readonly timestamp: string,
15) {}
16 }

Prima però la richiesta viene mandata al microservizio di «Chatbot» che restituisce una risposta

1 export class ProvChat {
2 constructor(
3 public readonly question: string,
4 public readonly answer: string,
5 public readonly timestamp: string,
6) {}
7 }

30 / 72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#rest-api
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#front-end

Specifica Tecnica

contenente la domanda fatta e la risposta che è stata generata.

Prima di essere passata verso il front-end, «ProvChat» viene inviata al microservizio «Storico»

1 postStorico(chat: ProvChat): Promise<Chat>;

, il quale salva e assegna un UUID alla nuova glossary («Chat»), oltre alla data del glossary («Fetch»),
in “lastUpdate” a cui appartengono le informazioni con cui è stata generata. Lo «Storico» ritorna un
oggetto «Chat» completo che quindi viene passato, attraverso l’ EndpointG al front-end per essere
visualizzato.

5.3.2) Storico UseDCase:

Usato per caricare le chat salvate nel database del microservizio «Storico» nel front-end. L’endpoint
“get-storico” riceve una richiesta all’interno di

1 export class RequestChatDTO {
2 constructor(
3 public readonly id: string,
4 public readonly numChat: number
5) {}
6 }

con («id») UUID dell’ultima chat visualizzabile nell’interfaccia grafica front-end e un («numChat»),
numero di chat(domanda + risposta) antecedenti a questa da caricare insieme.

1
async getStorico(@Query('id') id?: string,@Query('num') numChat?: number):
Promise<ChatDTO[]>

e restituisce al front-end un array di «Chat» invece che una sola. Se il sistema è stato appena avviato,
viene mandata una richiesta con id =“ “ e num = 1 che restituisce l”ultima chat in ordine cronologico
salvata nel database.

Le «Chat» recuperate con

1 getStorico(req: RequestChatCMD): Promise<Chat[]>;

vengono mandate al front-end con questo formato glossary («Json»)

1 .
2 .
3 [
4 {
5 "id": "ID DELLA CHAT",
6 "question": {
7 "content": "Domanda"
8 "timestamp": "DATA DOMANDA"
9 },

10 "answer": {
11 "content": "Risposta",
12 "timestamp": "DATA RISPOSTA"
13 }
14 }
15]
16 .
17 .

31 / 72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#endpoint

Specifica Tecnica

dove vengono suddivise e visualizzate in ordine cronologico .

5.3.3) Scheduling del Fetch:

Inoltre Api-Gateway si occupa anche dello scheduling del fetch delle informazioni nel microservizio
di «Information» e del passaggio della data in cui viene effettuato al microservizio di «Storico» con

1 postUpdate(LastFetch:string): Promise<Boolean>;

per essere salvata e poi fornita all’utente all’interno della glossary («Chat») che riceve indicando a
quando risalgono le informazioni usate per formulare la risposta.

Prima però viene fatto un check per controllare se esiste una data di fetchG nel database con

1 getLastUpdate(): Promise<LastUpdateCMD>;

, se non esiste significa che non è stato ancora fatto nessun fetch e in questo caso viene effettuato
un fetch completo che recupera tutte le informazioni. In questo caso noi abbiamo messo la data di
qualche mese fa per facilitare il test siccome il fetch, soprattutto di github, richiede tempo, ma se non
si mettesse una data viene fatto il fetch di tutto.

Nel caso invece esista questa viene usata come data di partenza.

Per gestire lo scheduling viene usato @Cron della libreria @nestjs/schedule(in questo caso è stato
impostato per essere effettuato ogni 5 minuti su richiesta dell’azienda). Oltre alla data vengono passati
anche una serie di oggetti che contengono dati sulle repository che vengono usati dal microservizio di
«Information» per fare il fetch delle informazioni.

1 ...
2 export class TasksService implements OnModuleInit {
3 private readonly logger = new Logger(TasksService.name);
4

5 constructor(
6 @Inject('InfoPort') private readonly infoPort: InfoPort,
7 @Inject('StoricoPort') private readonly storicoPort: StoricoPort,
8) {}
9

10 @Cron('0 */5 * * * *')
11 async handleCron() {
12 this.logger.debug('Esecuzione FETCH ogni TOT (ogni 5 min)...');
13 await this.runFetch();
14 }
15

16 private async runFetch() {
17 try {
18 this.logger.debug('Richiesta della data di ultimo FETCH (SERVICE)');
19 const isoDateString = await this.storicoPort.getLastUpdate();
20
21 let DataFetch: Date;
22

23 if (!isoDateString?.LastFetch) {
24

25 DataFetch = new Date();
26 DataFetch.setMonth(DataFetch.getMonth() - 9);

27
 this.logger.warn(`Nessuna data FETCH (SERVICE) precedente. Uso data di
fallback: ${DataFetch}`);

28 } else {
29 DataFetch = new Date(isoDateString.LastFetch);

32 / 72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#fetch

Specifica Tecnica

30
 this.logger.debug(`FETCH (SERVICE) da data salvata trovata: ${DataFetch}
`);

31 }
32

33 const boardId = 1;
34 const jiraCmd = new FetchJiraCMD(boardId, DataFetch);
35 const confCmd = new FetchConfluenceCMD(DataFetch);
36

37 const owner = process.env.GITHUB_OWNER || 'SweeTenTeam';
38 const repoName = process.env.GITHUB_REPO || 'BuddyBot';
39 const branch = process.env.GITHUB_BRANCH || 'develop';
40 const repoCMD = new RepoGithubCMD(owner, repoName, branch);
41 const githubCmd = new FetchGithubCMD([repoCMD], DataFetch);
42

43 const resultFetchJira = await this.infoPort.fetchUpdateJira(jiraCmd);
44 const resultFetchConf = await this.infoPort.fetchUpdateConf(confCmd);

45
 const resultFetchGithub = await
this.infoPort.fetchUpdateGithub(githubCmd);

46

47 if (resultFetchJira && resultFetchGithub && resultFetchConf) {
48 this.logger.log(`FETCH (SERVICE) completato con successo.`);
49

50 const NewDataFetch = new Date();
51 const lastUpdateCmd = new LastUpdateCMD(NewDataFetch.toISOString());
52 const result = await this.storicoPort.postUpdate(lastUpdateCmd);
53

54 this.logger.debug(`Salvataggio data fetch riuscito: ${result}`);
55 } else {

56
 this.logger.error(`FETCH (SERVICE) fallito: almeno uno dei servizi ha
dato errore.`);

57 }
58 } catch (error) {
59 this.logger.error('Errore nel FETCH (SERVICE) iniziale', error);
60 }
61 }
62 }

Con “FetchGithubCMD” che contiene le informazioni della repo a cui fare riferimento, questi sono
salvati in un file “.env” per essere facilmente modificabili.

1 import { RepoGithubCMD } from "./RepoGithubCMD.js";
2 export class FetchGithubCMD {
3 constructor (
4 public readonly repoDTOList: RepoGithubCMD[],
5 public readonly lastUpdate: Date
6){}
7 }
8 //CHE USA
9 export class RepoGithubCMD{

10 constructor(
11 public readonly owner: string,
12 public readonly repoName: string,
13 public readonly branch_name: string
14){}
15 }

Sono state messe 3 diverse funzioni per il fetch , una per ogni fonte, per rendere il codice facilmente
espandibile in futuro, nel caso si vogliano aggiungere nuovi fonti basterà aggiungere la loro funzione e
creare il loro oggetto con i dati necessari. Ma anche nel caso si voglia dare tempi di scheduling differenti
ad ogni fonte e salvare nel database date di diverse per ciascuna.

33 / 72

Specifica Tecnica

1 export interface InfoPort {
2 fetchUpdateGithub(req: FetchGithubCMD): Promise<Boolean>;
3 fetchUpdateJira(req: FetchJiraCMD): Promise<Boolean>;
4 fetchUpdateConf(req: FetchConfluenceCMD): Promise<Boolean>;
5 }

5.4) Microservizio Chatbot

Figura 28: UML ChatBot

Il microservizio Chatbot rappresenta una componente cruciale all’interno dell’architettura di Buddy-
BotG, essendo responsabile dell’elaborazione delle domande degli utenti e della generazione di risposte
pertinenti. Questo microservizio è progettato secondo i principi dell’architettura esagonale garantendo
una netta separazione tra la logica di business e i dettagli implementativi.

La sua funzione principale è quella di ricevere una domanda dall’utente, arricchirla con informazioni
contestuali recuperate dal microservizio Informazioni, e utilizzare queste informazioni per generare
una risposta accurata e rilevante attraverso un modello di linguaggio esterno (LLM).

5.4.1) Architettura e Componenti

L’architettura del microservizio è strutturata in diversi layer, ciascuno con responsabilità ben definite:

5.4.1.1) Domain Layer

Il Domain Layer contiene le entità core e i value objects che rappresentano i concetti fondamentali del
dominio, indipendenti da qualsiasi tecnologia specifica:

34 / 72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#buddybot
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#buddybot

Specifica Tecnica

• Entità:
‣ Chat: Rappresenta una conversazione completa con domanda e risposta
‣ Information: Contiene informazioni contestuali recuperate dal database vettoriale
‣ Metadata: Mantiene i metadati associati alle informazioni (origine, tipo, ID)

• Value Objects:
‣ ReqAnswerCmd: Command object che incapsula la richiesta dell’utente

5.4.1.2) Application Layer

L’Application Layer coordina il flusso di dati e implementa i casi d’uso dell’applicazione, orchestrando
il lavoro delle entità del dominio:

• Use Cases (Interfaces):
‣ ElaborazioneUseCase: Definisce il contratto per l’elaborazione delle domande e la generazione di

risposte

• Ports (Interfaces):
‣ LLMPort: Interfaccia che definisce le operazioni per interagire con modelli di linguaggio esterni
‣ VectorDbPort: Interfaccia che definisce le operazioni per recuperare informazioni dal database

vettoriale

• Services:
‣ ElaborazioneService: Implementazione concreta di ElaborazioneUseCase che coordina

l’interazione tra il recupero delle informazioni contestuali e la generazione delle risposte attraverso
il modello di linguaggio

Questo layer implementa la logica applicativa senza dipendere direttamente da meccanismi specifici
di persistenza o comunicazione, utilizzando le interfacce (ports) per interagire con il mondo esterno.

5.4.1.3) Adapters Layer

L’Adapters Layer traduce le interazioni tra il core dell’applicazione e il mondo esterno, gestendo le
conversioni di formato e protocollo:

• Adapters In:
‣ ChatController: Riceve le richieste tramite RabbitMQ, le converte in command objects

(ReqAnswerCmd) e le passa al caso d’uso appropriato (ElaborazioneUseCase)

• Adapters Out:
‣ GroqAdapter: Implementa LLMPort per interagire con il modello di linguaggio GroqG, convertendo

i formati di dominio in richieste API specifiche
‣ VectorDbAdapter: Implementa VectorDbPort per comunicare con il microservizio DB Vettoriale,

gestendo la serializzazione e deserializzazione dei messaggi RabbitMQ

• Data Transfer Objects (DTOs):
‣ ReqAnswerDTO: Oggetto di trasferimento dati per ricevere le richieste in ingresso dal client
‣ ChatDTO: Oggetto di trasferimento dati per le risposte (definito ma non utilizzato

nell’implementazione attuale)

Gli adapter isolano il core dell’applicazione dai dettagli di implementazione delle tecnologie esterne,
consentendo di sostituire facilmente tali tecnologie senza modificare la logica di business.

5.4.1.4) Infrastructure Layer

L’Infrastructure Layer fornisce implementazioni concrete per servizi esterni, configurazioni e mecca-
nismi di comunicazione:

35 / 72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#groq

Specifica Tecnica

• Clients:
‣ VectorDbClient: Client che gestisce la comunicazione con il microservizio DB Vettoriale tramite

RabbitMQ, incapsulando i dettagli di connessione e serializzazione
‣ ChatGroq: Client di terze parti per l’interazione con l’API di GroqG, configurato per utilizzare il

modello di linguaggio «qwen-2.5-32b»

• Configuration:
‣ ConfigModule: Modulo di NestJS che gestisce il caricamento e l’accesso alle variabili d’ambiente
‣ AppModule: Modulo principale dell’applicazione che configura le dipendenze, i provider e i con-

troller

• Communication:
‣ rabbitMQConfig: Configurazione per la connessione a RabbitMQ, definendo code e opzioni

Questo layer si concentra esclusivamente sui dettagli tecnici e sulle implementazioni specifiche delle
tecnologie, mantenendo queste preoccupazioni separate dalla logica di business.

5.4.2) Flusso Principale di Elaborazione

Il flusso principale per la generazione di una risposta segue questi passaggi:

1. Ricezione della richiesta
• Un messaggio contenente la domanda dell’utente viene ricevuto tramite RabbitMQ
• Il ChatController gestisce il messaggio e crea un comando ReqAnswerCmd

2. Ricerca di informazioni contestuali
• Il servizio ElaborazioneService utilizza VectorDbPort per cercare informazioni rilevanti nel

database vettorialeG

• La richiesta viene inoltrata al microservizio Informazioni tramite RabbitMQ

3. Generazione della risposta
• Le informazioni contestuali recuperate vengono combinate con la domanda originale
• Il servizio utilizza LLMPort per interagire con un modello di linguaggio (GroqG)
• La risposta generata viene formattata come oggetto Chat

36 / 72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#groq
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#database-vettoriale
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#groq

Specifica Tecnica

4. Restituzione della risposta
• Il risultato viene restituito al chiamante (API Gateway)

5.4.3) Componenti Principali

5.4.3.1) Controllers

• ChatController: Punto di ingresso per le richieste RabbitMQ. Gestisce il pattern di messaggistica
«get-answer» e converte i dati di richiesta (ReqAnswerDTO) in comandi di dominio (ReqAnswerCmd).

5.4.3.2) Use Cases e Ports

• ElaborazioneUseCase: Interfaccia che definisce il contratto per il caso d’uso principale di genera-
zione di risposte.

• LLMPort: Interfaccia che definisce il contratto per l’interazione con modelli di linguaggio.
• VectorDbPort: Interfaccia che definisce il contratto per l’interazione con il database vettorialeG.

5.4.3.3) Services

• ElaborazioneService: Implementazione principale del caso d’uso di elaborazione delle domande.
Gestisce il flusso complessivo dell’elaborazione della richiesta:
1. Ricerca di informazioni contestuali rilevanti tramite VectorDbPort
2. Invio della domanda e del contesto al modello di linguaggio tramite LLMPort
3. Restituzione della risposta generata

1 @Injectable()
2 export class ElaborazioneService implements ElaborazioneUseCase {
3 constructor(
4 @Inject(LLM_PORT)
5 private readonly llmPort: LLMPort,
6 @Inject(VECTOR_DB_PORT)
7 private readonly vectorDbPort: VectorDbPort,
8) {}
9

10 async getAnswer(req: ReqAnswerCmd): Promise<Chat> {

11
 // 1. Ricerca del contesto rilevante nel database vettoriale tramite
RabbitMQ

12 const relevantContext = await this.vectorDbPort.searchVectorDb(req);
13 console.log(`Retrieved ${relevantContext.length} relevant documents: `);
14
15 // 2. Genera la risposta utilizzando l'LLM con il contesto recuperato
16 const chat = await this.llmPort.generateAnswer(req, relevantContext);
17
18 return chat;
19 }
20 }

37 / 72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#database-vettoriale

Specifica Tecnica

5.4.3.4) Adapters

• GroqAdapter: Implementa LLMPort per interagire con il modello di linguaggio GroqG. Utilizza
LangChainG per gestire i prompt e il parsing delle risposte.

1 @Injectable()
2 export class GroqAdapter implements LLMPort {
3 constructor(private readonly groq: ChatGroq) {
4
5 }
6

7 async generateAnswer(req: ReqAnswerCmd, info: Information[]): Promise<Chat> {

8
 const prompt = PromptTemplate.fromTemplate(`Answer the question based only
on the following context: {context} Question: {question}`);

9 const ragChain = await createStuffDocumentsChain({
10 llm: this.groq,
11 prompt,
12 outputParser: new StringOutputParser(),
13 });
14 const documents: Document[] = [];
15 for(const information of info){
16 documents.push({
17 pageContent: information.content,
18 metadata: {
19 'origin': information.metadata.origin,
20 'type': information.metadata.type,
21 'originId': information.metadata.originID
22 }
23 });
24 }
25 const response = await ragChain.invoke({
26 question: req.getText(),
27 context: documents
28 });
29 return new Chat(req.getText(), response);
30 }
31 }

38 / 72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#groq
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#langchain

Specifica Tecnica

• VectorDbAdapter: Implementa VectorDbPort per interagire con il microservizio DB Vettoriale
tramite RabbitMQ.

1 @Injectable()
2 export class VectorDbAdapter implements VectorDbPort {
3 constructor(private client: VectorDbClient) {}
4
5 async searchVectorDb(req: ReqAnswerCmd): Promise<Information[]> {
6 let result: Information[] = [];

7
 const res = await this.client.sendMessage("retrieve.information",
{query: req.getText()});

8
9 for(const r of JSON.parse(JSON.stringify(res))) {

10 let i = new Information(
11 r.content,

12
 new Metadata(r.metadata.origin, r.metadata.type,
r.metadata.originID)

13);
14 result.push(i);
15 }
16
17 return result;
18 }
19 }

5.4.3.5) Entità e Value Objects

• Chat: Rappresenta una conversazione completa, contenente sia la domanda che la risposta.

1 export class Chat {
2 private question: string;
3 private answer: string;
4

5 constructor(question: string, answer: string) {
6 this.question = question;
7 this.answer = answer;
8 }
9

10 getQuestion(): string {
11 return this.question;
12 }
13

14 getAnswer(): string {
15 return this.answer;
16 }
17 }

39 / 72

Specifica Tecnica

• Information: Rappresenta le informazioni contestuali recuperate dal database vettorialeG.

1 export class Information {
2 constructor(
3 public readonly content: string,
4 public readonly metadata: Metadata,
5){}
6

7 getContent(): string {
8 return this.content;
9 }

10

11 getMetadata(): Metadata {
12 return this.metadata;
13 }
14 }

• Metadata: Contiene metadati associati alle informazioni contestuali.

1 export class Metadata {
2 constructor(
3 public readonly origin: string,
4 public readonly type: string,
5 public readonly originID: string,
6) {}
7

8 getOrigin(): string {
9 return this.origin;

10 }
11

12 getType(): string {
13 return this.type;
14 }
15

16 getOriginID(): string {
17 return this.originID;
18 }
19 }

5.4.4) Integrazione con LangChain e Groq

Il microservizio utilizza LangChainG come framework per semplificare l’interazione con i modelli di
linguaggio. In particolare:

1. Costruzione dei Prompt: Utilizza PromptTemplate per strutturare i prompt con un formato
coerente.

2. Catene di Elaborazione: Utilizza createStuffDocumentsChain per combinare documenti di con-
testo con la domanda dell’utente.

3. Parsing delle Risposte: Utilizza StringOutputParser per estrarre il testo dalla risposta del
modello.

Per l’integrazione con il modello GroqG, il servizio utilizza il modello «qwen-2.5-32b» con i seguenti
parametri:
• Limite di token: 6000
• Numero massimo di tentativi: 2

40 / 72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#database-vettoriale
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#langchain
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#groq

Specifica Tecnica

1 {
2 provide: ChatGroq,
3 useFactory: () => {
4 return new ChatGroq({
5 apiKey: process.env.GROQ_API_KEY,
6 model: "qwen-2.5-32b",
7 maxTokens: 6000,
8 maxRetries: 2,
9 });

10 },
11 }

5.4.5) Comunicazione con Altri Microservizi

La comunicazione con altri microservizi avviene principalmente tramite RabbitMQ:

1. Ricezione di Richieste dall’API Gateway:
• Coda: «chatbot-queue»
• Pattern di messaggistica: «get-answer»
• Payload: ReqAnswerDTO contenente il testo della domanda e il timestamp

2. Invio di Richieste al DB Vettoriale:
• Coda: «information-queue»
• Pattern di messaggistica: «retrieve.information»
• Payload: Oggetto contenente la query da cercare

La configurazione RabbitMQ è definita nel file main.ts:

1 const app = await NestFactory.createMicroservice<MicroserviceOptions>(
2 AppModule,
3 {
4 transport: Transport.RMQ,
5 options: {
6 urls: [process.env.RABBITMQ_URL || 'amqp://rabbitmq'],
7 queue: 'chatbot-queue',
8 queueOptions: {
9 durable: true,

10 },
11 },
12 },
13);

41 / 72

Specifica Tecnica

5.4.6) Configurazione e Ambiente

Il microservizio utilizza variabili d’ambiente per gestire le configurazioni:

• RABBITMQ_URL: URL del server RabbitMQ (default: amqp://rabbitmq)
• GROQ_API_KEY: Chiave API per l’accesso al servizio Groq

La configurazione dell’ambiente è gestita tramite il modulo ConfigModule di NestJS, che carica auto-
maticamente le variabili d’ambiente all’avvio dell’applicazione.

5.4.7) Conclusione

Il microservizio Chatbot rappresenta il cuore intelligente di BuddyBotG, responsabile della generazio-
ne di risposte accurate e contestualmente rilevanti. La sua architettura esagonale garantisce una chiara
separazione delle responsabilità, facilitando la manutenzione e l’evoluzione del sistema nel tempo.
L’integrazione con LangChainG e GroqG fornisce capacità avanzate di elaborazione del linguaggio
naturale, mentre la comunicazione tramite RabbitMQ assicura un’integrazione efficiente con gli altri
componenti del sistema.

42 / 72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#buddybot
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#langchain
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#groq

Specifica Tecnica

5.5) Microservizio Storico Chat

Figura 29: Progettazione del Microservizio Storico Chat

43 / 72

Specifica Tecnica

Il microservizio dello Storico riveste un ruolo fondamentale per il corretto funzionamento di
BuddyBotG: esso si occupa della gestione delle interazioni con il database relazionale PostgreSQLG,
prelevando e inserendo dati relativi alle conversazioni in modo affidabile. Come per gli altri micro-
servizi, anche questo è stato progettato secondo i principi dell’architettura esagonale, al fine di
garantire una netta separazione tra la logica di business e i dettagli di implementazione tecnologica.
In particolare, l’interazione con PostgreSQL è delegata a un repository dedicato (ChatRepository),
che utilizza TypeORMG per l’accesso e la gestione delle entità persistite. La logica applicativa, invece,
accede ai dati attraverso alle Port & Adapter di output, fungendo da mediatori con il repository. Questo
approccio consente di mantenere l’«application» completamente agnostica rispetto alla tecnologia di
persistenza, favorendo una maggiore manutenibilità, testabilità e flessibilità.

5.5.1) Quattro casi d’uso

Questo microservizio è stato progettato per l’esecuzione di 4 principali operazioni.
• Recupero dello Storico della Chat

‣ L’obiettivo è quello di recuperare dal database una specifica quantità di messaggi richiesti
• Inserimento di nuovi messaggi

‣ L’obiettivo è quello di inserire nuovi messaggi presenti nella UIG nel database, in maniera tale da
permettere successivi recuperi

• Inserimento dell’ultima data di recupero informazioni (Retrieval PeriodicoG)
‣ Il sistema esegue un recupero periodico dei dati provenienti da JiraG, GitHubG, ConfluenceG. In

questo microservizio si vuole memorizzare l’ultima data di recupero nel database (sovrascrivendo
quella precedente se presente), così da poterla restituire insieme ai dati della chat.

• Ottenimento della data di ultimo recupero / aggiornamento informazioni
‣ L’obiettivo è quello di recuperare correttamente nella tabella dedicata l’unico record presente

rappresentante la data in cui è stato eseguito l’ultimo Retrieval PeriodicoG.

Nelle prossime sezioni verranno riepilogati i 4 flussi per le rispettive operazioni.

5.5.2) Recupero dello Storico della Chat

• FetchRequestDTO: rappresenta il Data Transfer Object utilizzato per contenere la richiesta di recu-
pero dello storico. Include due parametri, ovvero:
‣ ID: identificativo che rappresenta l’ultima Chat (coppia di messaggi, come verrà spiegato nella spe-

cifica classe) precedentemente caricata. Questo valore viene utilizzato come punto di riferimento
cronologico per effettuare il fetch dei messaggi successivi, seguendo un ordinamento decrescente
(dal più recente al meno recente);

‣ numChat: quantità delle chat che si vogliono recuperare nella medesima operazione.

Il DTO in questo caso è essenziale per permettere un corretto trasferimento dei dati tra microservizi
e livelli differenti.

• FetchHistoryController: corrisponde al consumer, rimane in ascolto nella coda “fetch_queue”
e in ricezione ottiene un messaggio contenente una richiesta presente in un oggetto DTO -
FetchRequestDTO. Il controller si occupa di trasformare il DTO in un oggetto FetchHistoryCmd,
delegando l’elaborazione allo UseCase (interface) e alla sua corrispettiva implementazione, ossia al
Service. Una volta che quest’ultimo tornerà l’oggetto di dominio, il controller lo convertirà nuova-
mente in ChatDTO affinchè vengano rispettati i principi del modello esagonale.

• FetchHistoryCmd: command object creato a partire dal DTO, formalizza e incapsula i parametri
effettivi della richiesta. Utile a separare i dati provenienti dall’esterno dal formato atteso dalla logica
di business, garantendo isolamento tra livelli. I parametri presenti all’interno di tale richiesta sono
sempre “ID” e “numChat”, citati e spiegati in precedenza per il FetchRequestDTO.

44 / 72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#buddybot
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#postgresql
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#typeorm
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#ui
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#retrieval-periodico
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#jira
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#github
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#confluence
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#retrieval-periodico

Specifica Tecnica

• FetchHistoryUseCase: interfaccia che rappresenta la porta di ingresso della logica applicativa per
il recupero dello storico. Utile per garantire disaccopiamento tra Controller e Service. Nel metodo
esposto per il recupero viene passsato FetchHistoryCmd come input, mentre in output si ritorna
l’oggetto di dominio, ossia Chat.

• FetchHistoryService: implementazione concreta dell’interfaccia precedente, è la classe principale
della business logic. Non interagisce direttamente con il database, il suo ruolo è quello di orchestrare
un corretto recupero dello storico presente in database. In linea con i principi dell’architettura
esagonale, questa classe consente di mantenere la logica di business indipendente dall’infrastruttura.

• FetchHistoryPort: questa interfaccia rappresenta la porta di uscita (output port) dal punto di vista
della logica applicativa. Astrae il meccanismo con cui vengono recuperati i dati dal livello di persi-
stenza.

• FetchHistoryAdapter: implementazione concreta dell’interfaccia spiegata in precedenza, funge da
punto di collegamento tra logica applicativa al sistema di persistenza ma non accede al database. Il
suo primo compito è quello di formalizzare la richiesta ricevuta (FetchHistoryCmd) in un formato
adatto al repository, estraendo e passando in modo esplicito i parametri (id, numChat) necessari
alla query. Dopodichè riceve i dati persistiti (ChatEntity), li trasforma in dati di dominio (Chat) e li
restituisce al Service.

• ChatRepository: È la componente incaricata dell’accesso diretto a PostgreSQL, utilizzando TypeOR-
MG per la gestione delle entità e delle query. Fornisce il metodo fetchStoricoChat, che implementa
la logica di recupero dei messaggi in due scenari distinti:
‣ nel caso di primo accesso a BuddyBot (quando non è fornito un id), vengono recuperate le

conversazioni più recenti, ordinate per data in modo decrescente;
‣ nei casi successivi, viene prima identificata la chat corrispondente all’id fornito e, a partire dalla

sua data, vengono recuperate le conversazioni precedenti.

A seguire, viene inserito il metodo «fetchStoricoChat()» presente in questa classe.

1 ...
2 export class ChatRepository {
3 constructor(
4 @InjectRepository(ChatEntity) //tabella db della chat
5 private readonly chatRepo: Repository<ChatEntity>,
6

7
 @InjectRepository(LastUpdateEntity) //tabella db con unico record data
ultimo retrieval info

8 private readonly lastUpdateRepo: Repository<LastUpdateEntity>,
9) {}

10
11

12
 async fetchStoricoChat(lastChatId: string, numChat?: number):
Promise<ChatEntity[]> {

13 try {
14 const take = numChat ? numChat : 5;
15

16 //caso senza ID (quindi primo accesso)
17 if (!lastChatId) {
18 const lastChats = await this.chatRepo.find({
19 order: { answerDate: 'DESC' },
20 take,
21 });
22 return lastChats.slice().reverse()
23 }
24

45 / 72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#typeorm
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#typeorm

Specifica Tecnica

25
 //caso con ID, trovo chat corrispondente e prendo le precedenti (ragionando
in ordine cronologico)

26 const lastChat = await this.chatRepo.findOne({
27 where: { id: lastChatId },
28 });
29

30 if (!lastChat) {
31 throw new Error('Last chat ID not found');
32 }
33

34 const previousChats = await this.chatRepo.find({
35 where: {
36 answerDate: LessThan(lastChat.answerDate),
37 },
38 order: { answerDate: 'DESC' },
39 take: take,
40 });
41 const combo = previousChats.slice().reverse()
42 return combo;
43

44 } catch (error) {
45 console.error('Error during History-fetch:', error);
46 throw new Error('Error during History-fetch');
47 }
48 ...
49 }

• Chat: rappresenta l’entità di dominio; una singola Chat rappresenta una coppia di messaggi, ossia
include una domanda e la rispettiva risposta. La conversazione con BuddyBotG, quindi, si compone
di Chats.

1 export class Chat {
2 constructor(
3 public readonly id: string,
4 public readonly question: Message,
5 public readonly answer: Message,
6 public readonly lastFetch: string
7) {}
8 }

• ChatDTO: data transfer object di uscita, costruito dal controller a partire dagli oggetti Chat.

• Message: rappresenta l’entità di dominio che incapsula le informazioni relative a un singolo messag-
gio all’interno di una Chat.

1 export class MessageDTO {
2 constructor(
3 public readonly content: string,
4 public readonly timestamp: string,
5) {}
6 }

• MessageDTO: data transfer object utilizzato per esporre i singoli messaggi all’esterno.

• ChatEntity: rappresenta la mappatura dell’entità «Chat» nel database PostgreSQL, gestita tramite
TypeORMG. E’ associata a una tabella generata automaticamente e viene utilizzata per persistere
ogni conversazione tra l’utente e BuddyBot. I principali campi della classe sono:
‣ id: chiave primaria generata in formato UUID;

46 / 72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#buddybot
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#typeorm

Specifica Tecnica

‣ question: il contenuto testuale della domanda posta dall’utente;
‣ questionDate: timestamp associato alla domanda. Il valore di questo campo viene esplicitamente

passato tramite la richiesta di inserimento e conservato così com’è nel database;
‣ answer: il contenuto testuale della risposta generata;
‣ answerDate: a differenza della questionDate, è un timestamp generato automaticamente al

momento dell’inserimento nel database. È gestito da TypeORM tramite il decoratore @CreateDa-
teColumn, che assegna il valore corrente (now) senza necessità di specificarlo a livello applicativo.

‣ lastFetch: rappresenta la data dell’ultimo «Retrieval PeriodicoG» eseguito, dando all’utilizzatore
la possibilità di capire quanto recenti (o meno) sono i dati elaborati dal chatbot.

1
import { Column, CreateDateColumn, Entity, PrimaryGeneratedColumn } from
"typeorm";

2

3 @Entity()
4 export class ChatEntity {
5 @PrimaryGeneratedColumn('uuid') //primaryKey
6 id: string;
7

8 @Column()
9 question: string;

10

11 @Column({ type: 'timestamptz' })
12 questionDate: Date;
13

14 @Column()
15 answer: string;
16

17
 @CreateDateColumn({ type: 'timestamptz', default: () =>
'CURRENT_TIMESTAMP' })

18 answerDate: Date = new Date();
19

20 @Column()
21 lastFetch: string;
22 }

5.5.3) Inserimento di nuovi messaggi

• InsertRequestDTO: rappresenta il Data Transfer Object utilizzato per contenere la richiesta di
inserimento nel database di una nuova Chat (coppia di messaggi). Include tre parametri, ovvero:
‣ question: una stringa contenente la domanda posta;
‣ timestamp: una stringa contenente la data+orario dell’invio della domanda

– si osservi che viene passata solamente quella domanda poiché quella della risposta viene
decretata una volta avvenuto l’inserimento in database;

‣ answer: una stringa contenente la risposta generata dal chatbot.

Il DTO in questo caso è essenziale per permettere un corretto traferimento dei dati tra microservizi
e livelli differenti.

• InsertChatController: corrisponde al consumer, rimane in ascolto nella coda “chat_message”
e in ricezione ottiene un messaggio contenente una richiesta presente in un oggetto DTO -
InsertRequestDTO. Il controller si occupa di trasformare il DTO in un oggetto InsertChatCmd,
delegando l’elaborazione allo UseCase (interface) e alla sua corrispettiva implementazione, ossia al
Service. Una volta che quest’ultimo tornerà l’oggetto di dominio, il controller lo convertirà nuova-
mente in ChatDTO affinchè vengano rispettati i principi del modello esagonale.

• InsertChatCmd: command object creato a partire dal DTO, formalizza e incapsula i parametri effettivi
della richiesta. Utile a separare i dati provenienti dall’esterno dal formato atteso dalla logica di busi-

47 / 72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#retrieval-periodico

Specifica Tecnica

ness, garantendo isolamento tra livelli. I parametri presenti all’interno di tale richiesta rimangono i
medesimi citati e spiegati in precedenza per il InsertRequestDTO.

• InsertChatUseCase: interfaccia che rappresenta la porta di ingresso della logica applicativa per
l’inserimento in database di una nuova Chat. Utile per garantire disaccopiamento tra Controller e
Service.

• InsertChatService: implementazione concreta dell’interfaccia precedente, è la classe principale
della business logic. Non interagisce direttamente con il database, il suo ruolo è quello di orchestrare
un corretto inserimento di una Chat nel database. In linea con i principi dell’architettura esagonale,
questa classe consente di mantenere la logica di business indipendente dall’infrastruttura.

• InsertChatPort: questa interfaccia rappresenta la porta di uscita (output port) dal punto di vista
della logica applicativa. Astrae il meccanismo mediante il quale viene eseguito il processo di inseri-
mento dati nel database.

• InsertChatAdapter: implementazione concreta dell’interfaccia spiegata in precedenza, funge da
punto di collegamento tra logica applicativa al sistema di persistenza ma non accede al database. Il
suo primo compito è quello di formalizzare la richiesta ricevuta (FetchHistoryCmd) in un formato
adatto al repository, estraendo e passando in modo esplicito i parametri (id, numChat) necessari
alla query. Dopodichè riceve i dati persistiti (ChatEntity), li trasforma in dati di dominio (Chat) e li
restituisce al Service.

• ChatRepository: componente incaricata dell’accesso diretto a PostgreSQL, utilizzando TypeORMG

per la gestione delle entità e delle query. Fornisce il metodo insertStoricoChat(), che ha il compito
di persistere una nuova conversazione nel database. Prima di creare la nuova entità, viene effettuata
una lettura dal repository lastUpdateRepo, per recuperare il valore corrente dell’ultima data di
aggiornamento, lastFetch, utilizzato poi per popolare il medesimo campo della nuova conversazione
(domanda-risposta).

A seguire, viene inserito il metodo «insertStoricoChat()» presente in questa classe.

1 ...
2 export class ChatRepository {
3 constructor(
4 @InjectRepository(ChatEntity) //tabella db della chat
5 private readonly chatRepo: Repository<ChatEntity>,
6

7
 @InjectRepository(LastUpdateEntity) //tabella db con unico record data
ultimo retrieval info

8 private readonly lastUpdateRepo: Repository<LastUpdateEntity>,
9) {}

10
11

12
 async insertChat(question: string, answer: string, date: Date):
Promise<ChatEntity> {

13 const lastUpdate = await this.lastUpdateRepo.findOne({ where: { id: 1 } });
14

15 if (!lastUpdate) {
16 throw new Error('LastUpdate entry not found');
17 }
18

19 const newChat: ChatEntity = this.chatRepo.create({
20 question,
21 questionDate: date,
22 answer,
23 lastFetch: lastUpdate.lastFetch.toISOString()
24 });

48 / 72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#typeorm

Specifica Tecnica

25

26 await this.chatRepo.save(newChat);
27

28 return newChat;
29 }
30 ...
31 }

• Chat: rappresenta l’entità di dominio; una singola Chat rappresenta una coppia di messaggi, ossia
include una domanda e la rispettiva risposta. La conversazione con BuddyBotG, quindi, si compone
di Chats.

• ChatDTO: data transfer object di uscita, costruito dal controller a partire dagli oggetti Chat.

• Message: rappresenta l’entità di dominio che incapsula le informazioni relative a un singolo messag-
gio all’interno di una Chat.

• MessageDTO: data transfer object utilizzato per esporre i singoli messaggi all’esterno.

• ChatEntity: rappresenta la mappatura dell’entità «Chat» nel database PostgreSQL, gestita tramite
TypeORMG. E’ associata a una tabella generata automaticamente e viene utilizzata per persistere
ogni conversazione tra l’utente e BuddyBot. I suoi campi sono stati citati e spiegati nella sezione
precedente durante la spiegazione della medesima classe.

• LastUpdateEntity: rappresenta l’entità incaricata di tracciare la data dell’ultimo Retrieval perio-
dicoG effettuato, ovvero l’ultimo momento in cui è stato eseguito un fetch globale delle informazioni.
Nel database, la tabella last_update ospita un unico record persistente, contenente esclusivamente la
data di aggiornamento più recente.

1 import { Entity, PrimaryGeneratedColumn, Column } from 'typeorm';
2

3 @Entity('last_update')
4 export class LastUpdateEntity {
5 @PrimaryGeneratedColumn()
6 id: number;
7

8 @Column({type: 'timestamp' })
9 lastFetch: Date;

10 }

5.5.4) Inserimento dell’ultima data di recupero informazioni

• LastUpdateDTO: data transfer object utilizzato per rappresentare il payload della richiesta in arrivo.
Contiene un unico campo lastFetch, espresso come stringa, che rappresenta la data da registrare
come ultimo fetch delle informazioni.

• InsertLastUpdateController: punto di ingresso del microservizio per la richiesta di aggiornamento
del dato relativo all’ultimo retrieval. Il consumer (ossia tale controller) resta in ascolto di nuovi
messaggi sulla coda “lastFetch_queue” ed espone un metodo insertLastRetrieval() che riceve come
input un LastUpdateDTO, che trasformerà poi in un command object (Cmd). Ritornerà infine un
boolean per rappresentare l’esito dell’operazione.

• LastUpdateCmd: si tratta del command object utilizzato per incapsulare e strutturare il dato passato
dal DTO, prima di invocare lo UseCase. Questo passaggio consente di isolare il formato esterno (DTO)
dalla logica interna, mantenendo un’interfaccia pulita verso il dominio applicativo.

49 / 72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#buddybot
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#typeorm
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#retrieval-periodico
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#retrieval-periodico

Specifica Tecnica

• InsertLastUpdateUseCase: interfaccia che rappresenta la porta di ingresso della logica applicativa
per l’inserimento in database di una nuova «data di ultimo aggiornamento». Utile per garantire
disaccopiamento tra Controller e Service.

• InsertLastUpdateService: implementazione concreta dell’interfaccia precedente, è la classe prin-
cipale della business logic. Non interagisce direttamente con il database, il suo ruolo è quello
di orchestrare un corretto inserimento in database della data ottenuta. In linea con i principi
dell’architettura esagonale, questa classe consente di mantenere la logica di business indipendente
dall’infrastruttura.

• InsertLastUpdatePort: questa interfaccia rappresenta la porta di uscita (output port) dal punto di
vista della logica applicativa. Astrae il meccanismo mediante il quale viene eseguito il processo di
inserimento del dato in questione nel database.

• InsertLastUpdateAdapter: implementazione concreta dell’interfaccia spiegata in precedenza, funge
da punto di collegamento tra logica applicativa al sistema di persistenza, richiamando il metodo
richiesto ma non accedendo al database.

• ChatRepository: componente incaricata dell’accesso diretto a PostgreSQL, utilizzando TypeORMG

per la gestione delle entità e delle query. In questo contesto, espone il metodo insertLastRetrieval(),
che si occupa di aggiornare il valore della data di ultimo accesso nel record persistito della tabella
last_update. Si individua il record con id = 1 (ossia unico record presente nella tabella) aggiornando
il campo lastFetch con il dato nuovo da inserire.

A seguire, viene inserito il metodo «insertLastRetrieval()» presente in questa classe.

1 ...
2 export class ChatRepository {
3 constructor(
4 @InjectRepository(ChatEntity) //tabella db della chat
5 private readonly chatRepo: Repository<ChatEntity>,
6

7
 @InjectRepository(LastUpdateEntity) //tabella db con unico record data
ultimo retrieval info

8 private readonly lastUpdateRepo: Repository<LastUpdateEntity>,
9) {}

10
11

12 async insertLastRetrieval(date: string): Promise<boolean> {
13 const parsedDate = new Date(date);
14

15 //id sempre 1
16 const existing = await this.lastUpdateRepo.findOne({ where: { id: 1 } });
17

18 if (existing) {
19 existing.lastFetch = parsedDate;
20 await this.lastUpdateRepo.save(existing);
21 } else {
22 const newEntry = this.lastUpdateRepo.create({
23 id: 1,
24 lastFetch: parsedDate,
25 });
26 await this.lastUpdateRepo.save(newEntry);
27 }
28

29 return true;
30 }
31 ...
32 }

50 / 72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#typeorm

Specifica Tecnica

• LastUpdateEntity: rappresenta l’entità incaricata di tracciare la data dell’ultimo Retrieval perio-
dicoG effettuato, ovvero l’ultimo momento in cui è stato eseguito un fetch globale delle informazioni.
Nel database, la tabella last_update ospita un unico record persistente, contenente esclusivamente la
data di aggiornamento più recente.

5.5.5) Ottenimento della data di ultimo recupero / aggiornamento informazioni

• LastUpdateDTO: data transfer object utilizzato per trasmettere verso l’esterno il valore corrente della
data di ultimo aggiornamento.

• FetchLastUpdateController: rappresenta il punto di ingresso del microservizio per la richiesta di
lettura della data relativa all’ultimo retrieval periodico effettuato dal sistema. Il consumer (ossia tale
controller) resta in ascolto di nuovi messaggi sulla coda “getLastFetch_queue” ed espone un metodo
fetchLastUpdate(). Una volta ricevuto un messaggio, attiva il metodo il quale delega l’elaborazione
al caso d’uso implementato nel FetchLastUpdateService.

• FetchLastUpdateUseCase: interfaccia che rappresenta la porta di ingresso della logica applicativa
per il recupero del dato dal database. Utile per garantire disaccopiamento tra Controller e Service.

• FetchLastUpdateService: implementazione concreta dell’interfaccia precedente, è la classe princi-
pale della business logic. Non interagisce direttamente con il database, il suo ruolo è quello di
orchestrare un corretto recupero della «data di ultimo aggiornamento delle informazioni» presente
in database. In linea con i principi dell’architettura esagonale, questa classe consente di mantenere
la logica di business indipendente dall’infrastruttura.

• FetchLastUpdatePort: questa interfaccia rappresenta la porta di uscita (output port) dal punto di
vista della logica applicativa. Astrae il meccanismo mediante il quale viene eseguito il processo di
recupero del dato in questione dal database.

• FetchLastUpdateAdapter: implementazione concreta dell’interfaccia spiegata in precedenza, funge
da punto di collegamento tra logica applicativa al sistema di persistenza, richiamando il metodo
richiesto ma senza accedere al database.

• ChatRepository: componente incaricata dell’accesso diretto a PostgreSQL, utilizzando TypeORMG

per la gestione delle entità e delle query. In questo contesto viene esposto il metodo fetchLastUp-
date(), responsabile del recupero dell’unico record presente nella tabella last_update, contenente la
data dell’ultimo retrieval periodico. Si individua il record con id = 1 (ossia unico record presente
nella tabella) e, una volta recuperato, viene restituito al chiamante.

A seguire, viene inserito il metodo «fetchLastUpdate()» presente in questa classe.

1 async fetchLastUpdate(): Promise<LastUpdateEntity> {
2 const entity = await this.lastUpdateRepo.findOne({ where: { id: 1 } });
3 if (!entity) {
4 throw new Error('LastUpdate-record not found (in db)');
5 }
6 return entity;
7 }

• LastUpdate: rappresenta l’entità di dominio, contiene un solo campo lastFetch, espresso come
stringa, che identifica il momento in cui è stato eseguito l’ultimo fetch periodico delle informazioni.

• LastUpdateEntity: rappresenta l’entità incaricata di tracciare la data dell’ultimo Retrieval perio-
dicoG effettuato, ovvero l’ultimo momento in cui è stato eseguito un fetch globale delle informazioni.
Nel database, la tabella last_update ospita un unico record persistente, contenente esclusivamente la
data di aggiornamento più recente.

51 / 72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#retrieval-periodico
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#retrieval-periodico
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#typeorm
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#retrieval-periodico
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#retrieval-periodico

Specifica Tecnica

5.6) Microservizio Informazioni

Il microservizio Informazioni gestisce l’interazione tra il sistema e tre fonti esterne — Jira, Confluence
e GitHub — recuperando informazioni rilevanti che vengono archiviate in un database vettoriale.
Oltre alla fase di acquisizione e persistenza dei dati, il microservizio espone funzionalità di retrieval
semantico, fornendo le informazioni più pertinenti in base alle query degli utenti per supportare il
modello linguistico nella generazione di risposte contestualizzate.

5.6.1) Funzionalità principali

Il microservizio si articola in quattro casi d’uso fondamentali:
• Recupero e memorizzazione dei dati da Jira;
• Recupero e memorizzazione dei dati da Confluence;
• Recupero e memorizzazione dei dati da GitHub;
• Recupero di informazioni rilevanti basato sulle query utente.

Tutte le richieste vengono ricevute in modalità asincrona tramite RabbitMQ, che opera come
message broker. Ogni messaggio attiva il caso d’uso corrispondente, gestito secondo un’architettura
esagonale che garantisce una netta separazione tra logica di dominio, servizi applicativi e adattatori
per l’integrazione con fonti esterne e sistema di storage.

5.6.2) Classi condivise

5.6.2.1) QdrantDinformationDrepository

Questa classe gestisce la persistenza e il retrieval delle informazioni nel database vettoriale Qdrant,
fungendo da punto centralizzato per le operazioni di salvataggio e recupero. Il repository viene
inizializzato con un’istanza del Vector Store di LangChain passata come attributo nel costruttore,
permettendo un’astrazione efficace rispetto all’implementazione specifica del database vettoriale.

Operazioni principali:

• storeInformation(info: Information): Result

Questo metodo gestisce il salvataggio di nuove informazioni nel database vettoriale attraverso i
seguenti passaggi:
1. Estrazione dei metadati dall’oggetto Information;
2. Verifica dell’esistenza di vettori precedenti con lo stesso identificativo;
3. Rimozione di eventuali vettori esistenti utilizzando i Metadata per garantire la consistenza;
4. Suddivisione del documento in segmenti più piccoli (chunking) se la dimensione supera la soglia

massima per un embedding efficace;
5. Generazione degli embedding per ogni segmento attraverso il model provider gestito da Lang-

Chain;
6. Salvataggio dei vettori risultanti nel database vettoriale attraverso l’uso Vector Store di Lang-

Chain.

Il processo di chunking è particolarmente importante per gestire documenti di grandi dimensioni,
assicurando che ogni segmento possa essere correttamente vettorializzato mantenendo al contempo
la coerenza semantica.

• retrieveRelevantInfo(query: string, k?: number): InformationEntity*

Implementa una ricerca semantica utilizzando i metodi nativi di LangChain per il Vector Store:
1. Conversione della query testuale in un vettore embedding;
2. Esecuzione di una ricerca di similarità nel database vettoriale;

52 / 72

Specifica Tecnica

3. Recupero dei k documenti più rilevanti (dove k è configurabile, con un valore predefinito);
4. Ordinamento dei risultati in base al punteggio di similarità;

La ricerca semantica permette di identificare documenti concettualmente simili alla query
dell’utente, anche quando non condividono esattamente gli stessi termini, grazie alla rappresenta-
zione vettoriale dello spazio semantico.

5.6.2.2) Metadata

Contiene informazioni supplementari relative agli oggetti di business salvati nel database vettoriale.
Questi metadati identificano tutti i vettori derivati da un oggetto originale, consentendo modifiche o
rimozioni precise dei dati nel database.

5.6.2.3) Information

Rappresenta un oggetto di business completo dei relativi Metadata, garantendo il corretto salvataggio
del contenuto documentale. Questa classe assicura che gli oggetti provenienti da Jira, GitHub e
Confluence e i loro metadati siano salvati coerentemente.

5.6.2.4) InformationEntity

Entità di repository per Information, agisce come DTO per la persistenza.

5.6.2.5) MetadataEntity

Entità di repository per Metadata, essenziale per l’identificazione e gestione dei vettori.

5.6.2.6) Result

Classe di supporto che fornisce un meccanismo standardizzato per rappresentare l’esito di operazioni
di recupero e salvataggio dati. Permette di distinguere tra successo e fallimento, e in caso di errore, di
fornire una descrizione dettagliata.

5.6.3) Recupero e memorizzazione dei dati da GitHub

53 / 72

Specifica Tecnica

Figura 30: Diagramma UML di dettaglio riguardo alla raccolta delle informazioni di Github

54 / 72

Specifica Tecnica

Figura 31: Diagramma UML di dettaglio riguardo al salvataggio delle informazioni di Github

5.6.3.1) FetchGithubDTO

Classe che viene ricevuta in input dall’InformationController, contiene una lista di RepoDTO, spiegati
in seguito, e la data dall’ultima raccolta di informazioni.

export class FetchGithubDto {
 constructor (
 private repoDTOList: RepoGithubDTO[],
 private lastUpdate?: Date
){}
}

5.6.3.2) RepoDTO

55 / 72

Specifica Tecnica

Classe che contiene le informazioni necessarie a identificare univocamente la risorsa di cui vogliamo
raccogliere le informazioni, ossia:
• a chi appartiene il repository su GithubG

• il nome del repository
• il branch del repository

export class RepoGithubDTO{
 constructor(
 private owner: string,
 private repoName: string,
 private branch_name: string
){}
}

5.6.3.3) GithubCmd

Questa classe rappresenta il Command che riceve la business logic, contiene una lista di RepoCmd, che
contiene gli stessi campi di RepoDTO, e lo stesso “lastUpdate” ricevuto nel FetchGithubDto

export class GithubCmd {
 constructor(
 private repoCmdList:RepoCmd[],
 private lastUpdate?:Date
){}
}

5.6.3.4) RepoCmd

Questa classe è la classe RepoDTO adattata alla business logic.

export class RepoCmd{
 constructor (
 private owner: string,
 private repoName: string,
 private branch_name: string
){}
}

5.6.3.5) Commit

Questa classe è oggetto della business logic, contiene le informazioni che vogliamo raccogliere dei
commit di una determinata repository.

export class Commit{
 constructor(
 private repoName: string,
 private ownerRepository: string,
 private branch: string,
 private hash: string,
 private message: string,
 private dateOfCommit: string,
 private modifiedFiles: string[],
 private author: string,
) {}

 toStringifiedJson(): string {
 return JSON.stringify(this);
 }

56 / 72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#github

Specifica Tecnica

 getMetadata(): Metadata {
 return new Metadata(Origin.GITHUB, Type.COMMIT, this.hash);
 }
}

5.6.3.6) File

Questa classe è oggetto della business logic, contiene le informazioni che vogliamo raccogliere dei files
di un determinato branch in una determinata repository.

export class File{
 constructor(
 private path: string,
 private sha: string,
 private repositoryName: string,
 private branchName: string,
 private content: string
) {}

 toStringifiedJson(): string {
 return JSON.stringify(this);
 }

 getMetadata(): Metadata {
 return new Metadata(Origin.GITHUB, Type.FILE, this.sha);
 }
}

5.6.3.7) PullRequest

Questa classe è oggetto della business logic, contiene le informazioni che vogliamo raccogliere delle
pull requests in una determinata repository.

export class PullRequest{
 constructor(
 private id: number,
 private pull_number: number,
 private title: string,
 private description: string,
 private status: string,
 private assignees: string[],
 private reviewers: string[],
 private comments: CommentPR[],
 private modifiedFiles: string[],
 private fromBranch: string,
 private toBranch: string,
 private repository_name: string,
) {}

 toStringifiedJson(): string {
 return JSON.stringify(this);
 }

 getMetadata(): Metadata {
 return new Metadata(Origin.GITHUB, Type.PULLREQUEST, this.id.toString());
 }
}

57 / 72

Specifica Tecnica

5.6.3.8) CommentPR

Questa classe è oggetto della business logic, è contenuta all’interno di PullRequest in quanto si occupa
di contenere al suo interno le informazioni riguardanti un determinato commento di review su una
PullRequest.

export class CommentPR{
 constructor(
 private authorName: string,
 private content: string,
 private date: Date
){}

 getAuthorName(): string {
 return this.authorName;
 }

 getContent(): string {
 return this.content;
 }

 getDate(): Date {
 return this.date;
 }
}

5.6.3.9) Repository

Questa classe è oggetto della business logic, contiene le informazioni che vogliamo raccogliere di una
determinata repository.

export class Repository {
 constructor(
 private id: number,
 private name: string,
 private createdAt: string,
 private lastUpdate: string,
 private mainLanguage: string,
) {}

 toStringifiedJson(): string {
 return JSON.stringify(this);
 }

 getMetadata(): Metadata {
 return new Metadata(Origin.GITHUB, Type.REPOSITORY, this.id.toString());
 }
}

5.6.3.10) Workflow

Questa classe è oggetto della business logic, contiene le informazioni che vogliamo raccogliere dei
workflow in una determinata repository.

export class Workflow{
 constructor(
 private id: number,
 private name: string,

58 / 72

Specifica Tecnica

 private state: string,
 private repository_name: string,
) {}

 toStringifiedJson(): string {
 return JSON.stringify(this);
 }

 getMetadata(): Metadata {
 return new Metadata(Origin.GITHUB, Type.WORKFLOW, this.id.toString());
 }
}

5.6.3.11) WorkflowRun

Questa classe è oggetto della business logic, è contenuta all’interno di Workflow in quanto si occupa
di contenere al suo interno le informazioni riguardanti una determinata run di un Workflow.

export class WorkflowRun {
 constructor(
 private readonly id: number,
 private readonly status: string,
 private readonly duration_seconds: number,
 private log: string,
 private trigger: string,
 private workflow_id: number,
 private workflow_name: string
) {}

 toStringifiedJson(): string {
 return JSON.stringify(this);
 }

 getMetadata(): Metadata {
 return new Metadata(Origin.GITHUB, Type.WORKFLOW_RUN, this.id.toString());
 }
}

5.6.3.12) GithubFetchAndStoreController

Controller che resta in attesa di messaggi sulla coda information-queue, al fine di portare a termine
le operazioni di raccolta e salvataggio delle informazioni ottenute da Github. Ritorna come output un
oggetto ResultDTO.

5.6.3.13) GithubUseCase

Interfaccia che si comporta da porta d’ingresso alla business logic, offre il metodo fetchAndStoreInfo,
che prende in input il GithubCmd ricevuto dal controller.

export interface GithubUseCase {
 fetchAndStoreGithubInfo(req: GithubCmd): Promise<Result>;
}

5.6.3.14) GithubService

La classe principale della business logic, che implementa GithubUseCase citato precedentemente. Si
occupa di recuperare tutte le informazioni descritte nell’Analisi dei RequisitiG e di salvarle nel
database vettoriale.

59 / 72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#analisi-dei-requisiti

Specifica Tecnica

5.6.3.15) GithubCommitAPIPort

Interfaccia che si comporta come porta d’uscita (outbound port), offre il metodo fetchCommitInfo che
riceve in input GithubCmd e ritorna in output una lista di Commit.

export interface GithubCommitAPIPort {
 fetchGithubCommitsInfo(req: GithubCmd): Promise<Commit[]>
}

5.6.3.16) GithubFileAPIPort

Interfaccia che si comporta come porta d’uscita (outbound port), offre il metodo
fetchGithubFilesInfo che riceve in input FileCmd e ritorna in output una lista di Commit.

export interface GithubFilesAPIPort {
 fetchGithubFilesInfo(req: FileCmd[]): Promise<File[]>
}

5.6.3.17) GithubPullRequestAPIPort

Interfaccia che si comporta come porta d’uscita (outbound port), offre il metodo
fetchGithubPullRequestsInfo che riceve in input GithubCmd e ritorna in output una lista di
PullRequest.

export interface GithubPullRequestsAPIPort {
 fetchGithubPullRequestsInfo(req: GithubCmd): Promise<PullRequest[]>
}

5.6.3.18) GithubRepositoryAPIPort

Interfaccia che si comporta come porta d’uscita (outbound port), offre il metodo
fetchGithubRepositoryInfo che riceve in input GithubCmd e ritorna in output una lista di
Repository.

export interface GithubRepositoryAPIPort {
 fetchGithubRepositoryInfo(req: GithubCmd): Promise<Repository[]>
}

5.6.3.19) GithubWorkflowAPIPort

Interfaccia che si comporta come porta d’uscita (outbound port), offre i metodi:
• fetchGithubWorkflowInfo che riceve in input GithubCmd e ritorna in output una lista di Workflow.
• fetchGithubWorkflowRuns che riceve in input WorkflowRunCmd e ritorna in output una lista di
WorkflowRun.

export interface GithubWorkflowsAPIPort {
 fetchGithubWorkflowInfo(req: GithubCmd): Promise<Workflow[]>
 fetchGithubWorkflowRuns(req: WorkflowRunCmd): Promise<WorkflowRun[]>
}

5.6.3.20) GithubAPIAdapter

Questa classe implementa:
• GithubCommitAPIPort
• GithubFileAPIPort
• GithubPullRequestAPIPort
• GithubRepositoryAPIPort
• GithubWorkflowAPIPort

60 / 72

Specifica Tecnica

ponendosi come adapter tra la business logic e la classe che si occupa di fare le richieste API,
ossia GithubAPIRepository. Trasforma infatti gli oggetti JSON “grezzi” ritornati da quest’ultima e li
trasforma negli oggetti della business logic.

5.6.3.21) GithubAPIRepository

Questa è la classe che si occupa di interfacciarsi direttamente con le API di Github. Esegue richieste
tramite il client offerto da octo-kit e ritorna JSON con i dati “grezzi”.

5.6.3.22) GithubStoreInfoPort

Questa è l’interfaccia che funge da porta d’uscita (outbound port) al fine di salvare i GithubInfo nel
database vettoriale, offre il metodo storeGithubInfo che riceve in input una lista di GithubInfo.

export interface GithubStoreInfoPort {
 storeGithubInfo(req: GithubInfo): Promise<boolean>
}

5.6.3.23) GithubStoreInfoAdapter

Questa classe implementa GithubStoreInfoPort, si occupa di trasformare i GithubInfo in
Information per poter essere usati dal qdrant-information-repository ed essere salvati sul database
vettoriale.

5.6.4) Recupero e memorizzazione dei dati da Confluence

Figura 32: Diagramma UML di dettaglio riguardo a Confluence

5.6.4.1) ConfluenceController

61 / 72

Specifica Tecnica

Controller che resta in attesa di messaggi sulla coda information-queue, al fine di portare a termine
le operazioni di raccolta e salvataggio delle informazioni ottenute da Confluence. Ritorna come output
un oggetto ResultDTO.

5.6.4.2) ConfluenceUseCase

Interfaccia che si comporta da porta d’ingresso alla business logic, offre il metodo
fetchAndStoreDocument, che prende in input il ConfluenceCmd ricevuto dal controller e ritorna come
output un oggetto Result.

export interface ConfluenceUseCase {
 fetchAndStoreConfluenceInfo(req: ConfluenceCmd): Promise<Result>;
}

5.6.4.3) ConfluenceService

La classe principale della business logic, che implementa ConfluenceUseCase citato precedentemente.
Si occupa di recuperare i documenti creati e modificati entro una certa data, presente all’interno di
ConfluenceCmd.

export class ConfluenceService implements ConfluenceUseCase {
 constructor(
 @Inject(CONFLUENCE_API_PORT) private readonly confluenceAPIAdapter:
ConfluenceAPIPort,
 @Inject(CONFLUENCE_STORE_INFO_PORT) private readonly confluenceStoreAdapter:
ConfluenceStoreInfoPort
) {}

 async fetchAndStoreConfluenceInfo(req: ConfluenceCmd): Promise<Result> {
 const documents = await this.confluenceAPIAdapter.fetchDocuments(req);
 return await this.confluenceStoreAdapter.storeDocuments(documents);;
 }
}

5.6.4.4) ConfluenceDocument

Classe del domain, definisce le informazioni che vengono raccolte e viene usato come oggetto della
business logic.

5.6.4.5) ConfluenceAPIPort

Interfaccia che si comporta come porta d’uscita (outbound port), offre il metodo fetchDocuments che
riceve in input ConfluenceCmd e ritorna in output una lista di ConfluenceDocument.

5.6.4.6) ConfluenceAPIAdapter

Questa classe implementa ConfluenceAPIPort, ponendosi come adapter tra la business logic e la
classe che si occupa di fare le richieste API, ossia ConfluenceAPIRepository. Trasforma infatti gli
oggetti JSON “grezzi” ritornati da quest’ultima e li trasforma negli oggetti della business logic di
ConfluenceDocument.

5.6.4.7) ConfluenceAPIRepository

Questa è la classe che si occupa di interfacciarsi direttamente con le API di Confluence. Esegue richieste
HTTP e ritorna JSON con i dati “grezzi”.

5.6.4.8) ConfluenceStorePort

62 / 72

Specifica Tecnica

Questa è l’interfaccia che funge da porta d’uscita (outbound port) al fine di salvare i
ConfluenceDocument nel database vettoriale, offre il metodo storeDocuments che riceve in input una
lista di ConfluenceDocument.

export interface ConfluenceStoreInfoPort {
 storeDocuments(req: ConfluenceDocument[]): Promise<Result>;
}

5.6.4.9) ConfluenceStoreAdapter

Questa classe implementa ConfluenceStorePort, si occupa di trasformare i ConfluenceDocument in
Information per poter essere usati dal qdrant-information-repository ed essere salvati sul database
vettoriale.

5.6.5) Recupero e memorizzazione dei dati da Jira

Il seguente diagramma illustra le classi coinvolte nel caso d’uso «Recupero e memorizzazione dei ticket
di Jira», evidenziando l’architettura esagonale adottata:

Figura 33: Diagramma delle classi per il caso d'uso di recupero e memorizzazione dei ticket di Jira

5.6.5.1) Componenti Principali

63 / 72

Specifica Tecnica

5.6.5.1.1) JiraFetchAndStoreController

Punto d’ingresso per l’operazione di recupero e memorizzazione dei ticket da Jira. Riceve le richieste
esterne, le convalida e le indirizza verso il caso d’uso appropriato. Il controller accetta in input un
FetchJiraDTO contenente tutte le informazioni necessarie, inclusa la data dell’ultimo aggiornamento
per ottimizzare l’efficienza del recupero dati.

5.6.5.1.2) JiraUseCase

Interfaccia che definisce il contratto per la logica di recupero e memorizzazione, stabilendo
una chiara astrazione tra definizione del comportamento e implementazione. Espone il metodo
WorkspaceAndStoreJiraInfo(req: FetchJiraCmd): Result che restituisce un oggetto Result che
rappresenta l’esito dell’operazione.

5.6.5.1.3) JiraService

Implementazione concreta di JiraUseCase che coordina:
1. Il recupero dei ticket tramite JiraAPIPort
2. L’elaborazione dei dati ottenuti
3. La memorizzazione mediante StoreJiraPort

Questo servizio incapsula la logica principale del caso d’uso, gestendo correttamente eventuali errori
durante il processo.

5.6.5.1.4) Ticket

Rappresentazione strutturata di un ticket Jira nel dominio applicativo. Implementa l’interfaccia
ObjectToStore fornendo implementazioni concrete dei metodi:
• getMetadata(): Metadata
• toStringifiedJson(): string

5.6.5.1.5) JiraComment

Modella i commenti associati a un ticket, includendo dettagli come autore, contenuto e timestamp, per
una gestione completa delle informazioni correlate.

5.6.5.1.6) JiraAPIPort

Interfaccia che astrae le operazioni di interazione con l’API Jira, definendo un contratto chiaro indipen-
dente dai dettagli implementativi. Espone il metodo FetchTickets(req: FetchJiraCmd): Ticket*
che restituisce un array di ticket creati o modificati dalla data specificata nel comando.

5.6.5.1.7) JiraAPIAdapter

Implementa JiraAPIPort gestendo la comunicazione effettiva con l’API Jira tramite JiraAPIReposiD
tory. Traduce le risposte API nel formato interno richiesto dall’applicazione.

5.6.5.1.8) JiraAPIRepository

Classe che funge da intermediario per interagire direttamente con le API di Jira. Al momento della
sua creazione, richiede l’iniezione di un client autenticato per stabilire la connessione con Jira. Espone
un metodo fetchRecentIssues(daysBack: number, boardId: number): Json* in cui entrambi i
parametri sono opzionali:
• daysBack: Specifica il numero di giorni nel passato per cui recuperare le issue. Se omesso, vengono

restituite tutte le issue accessibili all’account;

64 / 72

Specifica Tecnica

• boardId: Limita la ricerca alle issue associate a una specifica board. Se omesso, vengono recuperate
le issue da tutte le board accessibili.

5.6.5.1.9) StoreJiraPort

Definisce l’interfaccia per la memorizzazione dei ticket, permettendo al nucleo applicativo di salvare
dati indipendentemente dal sistema di storage sottostante. Espone il metodo storeTickets(tickets:
Ticket*): Result che restituisce l’esito dell’operazione.

5.6.5.1.10) StoreJiraAdapter

Implementa StoreJiraPort gestendo la persistenza dei ticket nel database vettoriale tramite qdrantD
informationDrepository. Si occupa della trasformazione dei dati nel formato appropriato e
dell’interazione con il meccanismo di storage.

5.6.6) Recupero di informazioni rilevanti basato sulle query utente

Il seguente diagramma illustra le classi coinvolte nel caso d’uso «Recupero delle informazioni rilevanti
basato sulle query utente», evidenziando l’architettura esagonale adottata:

65 / 72

Specifica Tecnica

Figura 34: Diagramma delle classi per il caso d'uso di recupero di informazioni rilevanti basato sulle
query utente

5.6.6.1) Componenti Principali

5.6.6.1.1) RetrievalController

Punto d’ingresso per il recupero delle informazioni. Riceve richieste esterne contenenti una stringa
query incapsulata in un RetrievalInfoDTO, che viene poi convertito in un comando di dominio
RetrieveCmd. Dopo aver invocato il caso d’uso, restituisce un array di oggetti InformationDTO che
rappresentano le informazioni più rilevanti trovate.

5.6.6.1.2) RetrievalInfoUseCase

66 / 72

Specifica Tecnica

Interfaccia che definisce il contratto del caso d’uso, delegando la responsabilità di recuperare le infor-
mazioni rilevanti. Espone il metodo retrieveRelevantInfo(cmd: RetrieveCmd): Information*, che
restituisce un array ordinato di oggetti Information.

5.6.6.1.3) RetrievalInfoService

Implementazione concreta di RetrievalInfoUseCase, si occupa della logica principale del caso d’uso.
Riceve il comando, interagisce con la porta RetrievalInfoPort, la quale viene iniettata nel costruttore,
e restituisce il risultato sotto forma di array di Information.

5.6.6.1.4) RetrieveCmd

Oggetto di dominio che incapsula la richiesta dell’utente, contenente il campo query. Utilizzato inter-
namente per mantenere la coerenza del linguaggio di dominio tra i livelli.

5.6.6.1.5) RetrievalInfoPort

Interfaccia che astrae la logica di accesso ai dati. Espone il metodo retrieveRelevantInfo(cmd:
RetrieveCmd): Information*, consentendo al servizio applicativo di restare disaccoppiato dalla
tecnologia di persistenza.

5.6.6.1.6) RetrievalInfoAdapter

Implementazione concreta della porta RetrievalInfoPort, interagisce con qdrant-information-reposi-
tory per recuperare le informazioni rilevanti alla domanda dell’utente. Converte gli oggetti provenienti
dal repository in oggetti di dominio.

67 / 72

Specifica Tecnica

6) Tracciamento requisiti

6.1) Stato dei requisiti funzionali

Codice Descrizione Stato

RFD001
L’utente deve accedere all’applicazione senza necessità di autentica-

zione Soddisfatto

RFD002
Il sistema deve archiviare in modo persistente le domande degli utenti

e le risposte generate Soddisfatto

RFD003
L’utente deve poter visualizzare lo storico della chat in ordine crono-

logico inverso (dal più recente al più vecchio). Soddisfatto

RFD004
L’utente deve visualizzare un messaggio informativo che spiega che

non ci sono messaggi nello storico Soddisfatto

RFD005
L’utente deve visualizzare un messaggio di errore se il sistema non

riesce a recuperare lo storico Soddisfatto

RFD006
L’utente deve visualizzare un messaggio di errore se la richiesta non è

stata completata a causa di un timeout Soddisfatto

RFD007
L’utente deve visualizzare un messaggio di errore se il backend non è

disponibile Soddisfatto

RFD008
L’utente deve visualizzare per ogni messaggio: il contenuto, la data e

ora di invio Soddisfatto

RFD009
L’utente deve visualizzare lo sfondo di un messaggio inviato da un

utente di colore grigio Soddisfatto

RFD010
L’utente deve visualizzare lo sfondo di un messaggio inviato da Bud-

dybotG di colore blu Soddisfatto

RFD011
L’utente deve visualizzare per ogni messaggio inviato da BuddybotG

la data e l’ora dell’ultimo aggiornamento dei dati usati per generare la
risposta

Soddisfatto

RFD012 L’utente deve poter scrivere una domanda in linguaggio naturale Soddisfatto
RFD013 L’utente deve poter inviare la domanda scritta al sistema Soddisfatto
RFD014 L’utente deve poter visualizzare la risposta generata da BuddybotG Soddisfatto

RFD015
L’utente deve essere informato se la domanda che ha posto non rientra
nelle competenze specifiche del sistema tramite una risposta generata

da BuddybotG

Soddisfatto

RFD016
L’utente deve essere informato se i documenti richiesti nella domanda
non sono disponibili all’interno del sistema tramite una risposta gene-

rata da BuddybotG

Soddisfatto

RFD017
L’utente deve poter visualizzare un messaggio di errore se si è verifi-
cato un errore generico nella generazione della risposta da parte del

backendG

Soddisfatto

RFD018
L’utente deve poter visualizzare un messaggio di errore se la risposta
non è stata generata perchè supera la lunghezza massima consentita Soddisfatto

RFD019
L’utente deve poter visualizzare un messaggio di errore se la domanda

supera la lunghezza massima consentita Soddisfatto

68 / 72

https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#buddybot
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#buddybot
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#buddybot
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#buddybot
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#buddybot
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#buddybot
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#backend

Specifica Tecnica

RFD020
Il sistema deve generare una risposta appropriata alla domanda posta

dell’utente Soddisfatto

RFD021

Il sistema deve recuperare da GitHub le seguenti informazioni:

Per ogni repository:
• Nome della repository
• Id della repository
• Descrizione della repository
• Data di creazione della repository
• Ultima data di aggiornamento della repository
• Linguaggio principale della repository

Per ogni commit:
• Hash del commit
• Messaggio del commit
• Data e ora dell’ultimo commit
• Branch associato al commit
• File modificati nel commit
• Autore dell’ultimo commit
• Nome della repository di appartenenza del commit
• Nome del branch di appartenenza del commit

Per ogni pull request:
• Id della pull request
• Titolo della pull request
• Descrizione della pull request
• Stato della pull request
• Assegnatario della pull request
• Reviewers della pull request
• Commenti della pull request
• File modificati nella pull request
• Branch di origine della pull request
• Branch di destinazione della pull request
• Nome repository di appartenenza

Per ogni workflow:
• Id del workflow
• Nome del workflow
• Stato del workflow
• Nome repository di appartenenza
• Lista delle run per il workflow

Per ogni workflow run:
• Id della run
• Stato della run
• Durata in secondi della run
• Link del log della run
• Trigger della run
• Id del workflow di appartenenza
• Nome del workflow di appartenenza

Soddisfatto

69 / 72

Specifica Tecnica

Per ogni file:
• Path del file
• SHA del file
• Nome repository di appartenenza
• Nome branch di appartenenza
• Contenuto del file

RFD022

Il sistema deve recuperare da Confluence le seguenti informazioni:
• Id di una pagina
• Titolo di una pagina
• Stato di una pagina
• Autore di una pagina
• Owner di una pagina
• Spazio di una pagina
• Contenuto di una pagina

Soddisfatto

RFD023

Il sistema deve recuperare da Jira le seguenti informazioni:
• Id di un ticket
• Titolo di un ticket
• Descrizione di un ticket
• Assegnatario di un ticket
• Stato di un ticket
• Sprint di appartenenza di un ticket
• Story point estimate di un ticket
• Creatore di un ticket
• Priorità
• Data di scadenza
• Ticket collegati
• Commenti del ticket

Per ogni commento del ticket:
• Autore del commento
• Data di creazione
• Contenuto del commento

Soddisfatto

RFD024
Il sistema deve informare l’utente in caso di errore durante la genera-

zione della risposta Soddisfatto

RFD025
Il sistema deve informare l’utente se la risposta supera la lunghezza

massima consentita Soddisfatto

RFD026
Il sistema deve fornire la data e l’ora dell’ultimo aggiornamento dei dati

utilizzati Soddisfatto

RFD027
Il sistema deve aggiornare i dati dei documenti provenienti da GitHub,

Confluence e Jira ogni 24 ore Soddisfatto

RFD028
Il sistema deve salvare i dati provenienti dalle fonti (Githbu, Jira, Con-

fluence) in un database vettoriale Soddisfatto

RFD029
Il sistema deve convertire i dati provenienti dalle fonti (Githbu, Jira,

Confluence) da forma testuale a forma vettoriale Soddisfatto

RFD030 L’utente deve poter modificare una domanda già inviata Non soddisfatto

RFD031
L’utente deve poter selezionare il tema chiaro o scuro per visualizzare

l’interfaccia utente Soddisfatto

70 / 72

Specifica Tecnica

RFD032
Il sistema deve visualizzare un’icona identificativa (cliccabile ed inte-
rattiva) per l’accesso a una risorsa esterna, aprendo la pagina web

associata in una nuova finestra o scheda del browser.
Soddisfatto

RFD033
Il sistema deve visualizzare un’icona identificativa (cliccabile ed inte-

rattiva) per l’accesso al sito-documentazione di Jira Soddisfatto

RFD034
Il sistema deve visualizzare un’icona identificativa (cliccabile ed inte-

rattiva) per l’accesso al sito-documentazione di GitHub Soddisfatto

RFD035
Il sistema deve visualizzare un’icona identificativa (cliccabile ed inte-

rattiva) per l’accesso al sito-documentazione di Confluence Soddisfatto

RFD036
Il sistema deve visualizzare un’animazione di caricamento circolare

durante il recupero dello storico della chat Soddisfatto

RFD037
Il sistema deve visualizzare un’animazione di caricamento composta da
tre puntini, durante l’elaborazione della risposta da parte del backend Soddisfatto

RFD038
Il sistema deve visualizzare un pulsante «Load More» nella parte
superiore della chat, che consenta all’utente di caricare 10 messaggi

precedenti non ancora visualizzati
Soddisfatto

RFD039
L’utente deve visualizzare il contenuto del messaggio in formato mar-

kdown Soddisfatto

RFD040
L’utente deve poteer incollare nell’input di testo il contenuto copiato

in precedenza Soddisfatto

RFD041
L’interfaccia utente deve scrollare verso il basso mostrando l’ultimo
messaggio inviato ogni volta che l’utente invia un nuovo messaggio Soddisfatto

Tabella 1: Stato Requisiti Funzionali

71 / 72

Specifica Tecnica

6.2) Grafici riassuntivi

Figura 35: Stato dei requisiti funzionali obbligatori

Figura 36: Stato dei requisiti funzionali opzionali

Figura 37: Stato dei requisiti funzionali desiderabili

72 / 72

	Introduzione
	Scopo del documento
	Scopo del prodotto
	Miglioramenti e maturità
	Glossario
	Riferimenti
	Riferimenti normativi
	Riferimenti informativi
	Riferimenti Tecnici

	Tecnologie
	Tecnologie di sviluppo
	Typescript
	Langchain
	Node.js
	Nest.js
	GroqCloud
	Qdrant
	NomicAi
	PostgreSQL
	Octokit
	JiraJs
	ConfluenceJs
	Docker
	React.js
	ReactQuery
	TailwindCSS
	Next.js
	ShadCn
	LucideReact

	Tecnologie di testing
	Jest
	ESLint

	Architettura di Sistema
	Approccio alla Progettazione
	Contenitori e Deploy con Docker

	Architettura di sistema
	Strutturazione Generale del Sistema
	Architettura del frontend
	Architettura del Backend
	Architettura di Deployment
	Vantaggi dell'architettura a microservizi
	Svantaggi
	Microservizi Identificati
	Comunicazione tra Microservizi: RabbitMQ
	Pattern e implementazione

	Architettura logica
	Struttura dell'architettura esagonale
	Vantaggi

	Design pattern utilizzati
	Dependency Injection

	Progettazione di dettaglio
	Progettazione frontend
	Architettura nel dettaglio
	Componenti
	Struttura dei dati
	Gestione dello stato e del tema
	Gestione e adattamento dei dati per la chat

	Microservizio Api-Gateway
	Risposta Use-Case:
	Storico Use-Case:
	Scheduling del Fetch:

	Microservizio Chatbot
	Architettura e Componenti
	Domain Layer
	Application Layer
	Adapters Layer
	Infrastructure Layer

	Flusso Principale di Elaborazione
	Componenti Principali
	Controllers
	Use Cases e Ports
	Services
	Adapters
	Entità e Value Objects

	Integrazione con LangChain e Groq
	Comunicazione con Altri Microservizi
	Configurazione e Ambiente
	Conclusione

	Microservizio Storico Chat
	Quattro casi d'uso
	Recupero dello Storico della Chat
	Inserimento di nuovi messaggi
	Inserimento dell'ultima data di recupero informazioni
	Ottenimento della data di ultimo recupero / aggiornamento informazioni

	Microservizio Informazioni
	Funzionalità principali
	Classi condivise
	Qdrant-information-repository
	Metadata
	Information
	InformationEntity
	MetadataEntity
	Result

	Recupero e memorizzazione dei dati da GitHub
	FetchGithubDTO
	RepoDTO
	GithubCmd
	RepoCmd
	Commit
	File
	PullRequest
	CommentPR
	Repository
	Workflow
	WorkflowRun
	GithubFetchAndStoreController
	GithubUseCase
	GithubService
	GithubCommitAPIPort
	GithubFileAPIPort
	GithubPullRequestAPIPort
	GithubRepositoryAPIPort
	GithubWorkflowAPIPort
	GithubAPIAdapter
	GithubAPIRepository
	GithubStoreInfoPort
	GithubStoreInfoAdapter

	Recupero e memorizzazione dei dati da Confluence
	ConfluenceController
	ConfluenceUseCase
	ConfluenceService
	ConfluenceDocument
	ConfluenceAPIPort
	ConfluenceAPIAdapter
	ConfluenceAPIRepository
	ConfluenceStorePort
	ConfluenceStoreAdapter

	Recupero e memorizzazione dei dati da Jira
	Componenti Principali
	JiraFetchAndStoreController
	JiraUseCase
	JiraService
	Ticket
	JiraComment
	JiraAPIPort
	JiraAPIAdapter
	JiraAPIRepository
	StoreJiraPort
	StoreJiraAdapter

	Recupero di informazioni rilevanti basato sulle query utente
	Componenti Principali
	RetrievalController
	RetrievalInfoUseCase
	RetrievalInfoService
	RetrieveCmd
	RetrievalInfoPort
	RetrievalInfoAdapter

	Tracciamento requisiti
	Stato dei requisiti funzionali
	Grafici riassuntivi

