Piano di Qualifica

2025-04-15
v2.0.0

sweetenteam@gmail.com

https://sweetenteam.github.io

Destinatari | Prof. Tullio Vardanega
Prof. Riccardo Cardin
AzzurroDigitale

Redattori | Davide Benedetti
Matteo Campagnaro
Andrea Santi

Verificatori | Davide Benedetti
Matteo Campagnaro
Orlando Ferazzani

1/ 46


mailto:sweetenteam@gmail.com
https://sweetenteam.github.io

Piano di Qualifica

Registro delle modifiche

Versione | Data Autori Verificatori Dettaglio

2.0.0 2025-04-15 | Matteo Campagnaro | Orlando Ferazzani Approvazione per PB

1.3.0 2025-04-11 | Matteo Campagnaro | Orlando Ferazzani Stesura sezione «Test di integrazione»

1.2.0 2025-04-11 | Matteo Campagnaro | Orlando Ferazzani Stesura sezione «Test di unita»

1.1.0 2025-04-10 | Matteo Campagnaro | Orlando Ferazzani Stesura sezione «Cruscotto di valutazione della
qualita»

1.0.0 2025-02-10 | Andrea Santi Matteo Campagnaro | Approvazione per RTB

0.1.0 2025-02-08 | Matteo Campagnaro | Davide Benedetti Stesura sezioni «Cruscotto di valutazione della
qualita» e «Valutazione per il miglioramento»

0.0.3 2025-02-01 | Andrea Santi Davide Benedetti Aggiunti test di sistema e accettazione

0.0.2 2024-12-28 | Andrea Santi Matteo Campagnaro | Stesura sezione «Strategia di testing»

0.0.1 2024-12-07 | Davide Benedetti Orlando Ferazzani Stesura introduzione e obiettivi di qualita.

2/46




Piano di Qualifica

Indice
1) INtrodUzione . ... ... ... o i e 6
1.1) Scopo del dOCUMENTO ... ...ttt 6
1.2) SCOPO Al PrOGELLO . ...ttt e 6
1.3) GlOSSATIO ..ottt ettt et et e e e 6
1.4) RIfErimenti .. ...ttt e 7
R 03 0V 15 7
1.4.2) INfOrmativi ...ttt ettt et e e 7
2) Obiettivi di qualita ... ... 8
2.1) QUALILA di PrOCESSO ...ttt ettt ettt e et 8
2.1.1) ProCeSS PIIIMATT .. ...ttt ettt ettt 8
2.1.1.1) FOIMITULA ..ottt ettt ettt e e 8
2.1.1.2) SVIIUPPO oot 8
2.1.2) Processi di SUPPOTLO ...ttt ettt ettt 8
2.1.2.1) DOCUMENTAZIONIE . ...\ttt ettt ettt e e et e e et e e e e et e e e e e 8
2.1.2.2) Vet iCa oottt 8
2.1.2.3) Gestione della qUAlita ..............uuuee 9
2.1.3) Processi Organizzativi ...........ooiiitiitit e 9
2.1.3.1) GeStIONE A€l PIOCESSI - .. v v uuu ettt ettt ettt ettt 9
2.2) Qualitd di Prodotto ... .......ee e 9
2.2.1) Funzionalitd ...... ... i 9
2.2.2) Affidabilita ... ..o o 9
2.2.3) Usabilita . ..ot 10
2.2.4) BIHCIENZA . ... e 10
2.2.5) Manutenibilitd .. .. ... e 10
3) Strategie di testing ... ... ... 11
3.1) Struttura tabelle ...... ..o e 11
3.2) Test di Umita ... ...oo ot et e 12
3.3) Test diintegrazione ...........o oo 23
3.4) Test di SISEEIMIA .. ... o i i e 26
3.5) Test di accettazione ................ooiiiiiii i e 28
4) Cruscotto di valutazione dellaqualita ......................... ... ..., 29
4.1) M-PRC-EAC - Estimated at Completion ........... ... 29
4.2) M-PRC-EV - Earned Value & M-PRC-PV - Planned Value .....................cooiiiiiiiinannnn. 30
4.3) M-PRC-AC - Actual Cost & M-PRC-ETC - Estimate to Complete ..................cciiiinnn. 31
4.4) M-PRC-CV - Cost Variance & M-PRC-SV - Schedule Variance .....................c.cooieeien. 32
4.5) M-PRC-RSI - Requirements stability index ... 33
4.6) M-PRC-GLP - Indice GUIPEASE ...\ .uuee 34
4.7) M-PRC-CO - Correttezza Ortografica .............ooiiiiiiiiiiii e 35
4.8) M-PRC-QMS - Quality Metrics Satisfied ...t 36
4.9) M-PRC-NCR - Non-Calculated RisK ......... ..o i 37
4.10) M-PRC-TE - Temporal Efficiency ... e 38
4.11) M-PRC-PTCP - Passed Test Cases Percentage ................ooiiiiiiiiiiiiiiiiiiiiiiiiiiia 39
4.12) M-PRD-CRV - Copertura dei requisiti obbligatori (vincolanti) ..........................oo... 40
4.13) M-PRD-CRD - Copertura dei requisiti desiderabili.....................o i, 41
4.14) M-PRD-CRO - Copertura dei requisiti opzionali......................... 42
4.15) M-PRD-CC - COde COVEIAZE ...\ttt ettt e e e e e e et e e e e e e 43
4.16) M-PRD-BC - Branch coverage ...........oooiiiiiiiiiii 44

3/46



Piano di Qualifica

4.17) M-PRD-FD - Failure density
4.18) M-PRD-CS - Code smell ....

4/46



Piano di Qualifica

Lista della immagini

Figura 1
Figura 2
Figura 3
Figura 4
Figura 5
Figura 6
Figura 7
Figura 8

Figura 9
Figura 10
Figura 11

Proiezione della stima del costo totale nei vari periodi di progetto. ....................... 29
Proiezione dell’EV e del PV nei vari periodi di progetto. ..................coooiiiiiii.. 30
Proiezione dell’AC e dell’ETC nei vari periodi di progetto. ...t 31
Proiezione della CV e della SV nei vari periodi di progetto. ......................ooooo.. 32
Proiezione del RSI nei vari periodi di progetto. ... 33
Proiezione dell’indice Gulpease per ogni documento (RTB) nei vari periodi di progetto. . 34
Proiezione della correttezza ortografica nei vari periodi di progetto. ...................... 35
Proiezione della percentuale di metriche di qualita soddisfatte nei vari periodi di

PIOBEtEO. L. 36
Proiezione rischi non identificati nei vari periodi di progetto. ...................coool 37
Proiezione dell’efficienza temporale nei vari periodi di progetto. .......................... 38

Proiezione della percentuale di test terminati con successo nei vari periodi di progetto. . 39

Figura 12 Proiezione della copertura dei requisiti obbligatori (vincolanti) nei vari periodi di
PrOgetto. ..o 40

Figura 13 Proiezione della copertura dei requisiti desiderabili nei vari periodi di progetto. ......... 41
Figura 14 Proiezione della copertura dei requisiti opzionali nei vari periodi di progetto. ........... 42
Figura 15 Proiezione della code coverage nei vari periodi di progetto. ...................ccoiiin. 43
Figura 16 Proiezione della branch coverage nei vari periodi di progetto. ............................ 44
Figura 17 Proiezione della failure density nei vari periodi di progetto. ...............ccooiiiiiinnn. 45
Figura 18 Proiezione del numero di code smell nei vari periodi di progetto. ......................... 46
Lista delle tabelle
Tabella 1 Valori ideali e accettabili per ciascuna metrica relativa al processo di fornitura. .......... 8
Tabella 2 Valori ideali e accettabili per ciascuna metrica relativa al processo di sviluppo. .......... 8
Tabella 3 Valori ideali e accettabili per ciascuna metrica relativa al processo di documentazione. .. 8
Tabella 4 Valori ideali e accettabili per ciascuna metrica relativa al processo di verifica. ............ 9
Tabella 5 Valori ideali e accettabili per ciascuna metrica relativa al processo di gestione della

QUALTEA. s 9
Tabella 6 Valori ideali e accettabili per ciascuna metrica relativa al processo di gestione dei

93 0T 9
Tabella 7 Valori ideali e accettabili per ciascuna metrica relativa alle funzionalita del prodotto. .... 9
Tabella 8 Valori ideali e accettabili per ciascuna metrica relativa l'affidabilita del prodotto. ........ 9
Tabella 9 Valori ideali e accettabili per ciascuna metrica relativa l'usabilita del prodotto. ......... 10
Tabella 10 Valori ideali e accettabili per ciascuna metrica relativa l'efficienza del prodotto. ... ..... 10
Tabella 11 Valori ideali e accettabili per ciascuna metrica relativa la manutenibilita del prodotto. . 10
Tabella 12 Stato dei test di UNIEA .. ...ttt et ettt e e 12
Tabella 13 Stato dei test di INtEEIazioNe ...........ooiiiiiiiiiiii 23
Tabella 14 Stato dei test di SISEEIMA .......oiiiiti et 26
Tabella 15 Stato dei test di ACCELtAZIONE ... ... ittt et 28

5/46



Piano di Qualifica

1) Introduzione

1.1) Scopo del documento

Questo documento presenta una panoramica dettagliata delle strategie di verifica e validazione adot-
tate per garantire la qualita del prodotto e dei processi coinvolti nel progetto. Data la natura dinamica
e incrementale del documento, i contenuti saranno ampliati e modificati nel tempo per riflettere
Pevoluzione del progetto e adattarsi alle esigenze mutevoli.

Il Piano di Qualifica illustra le pratiche di controllo della qualita degli artefatti e dei processi, con
particolare attenzione alle metriche di valutazione del prodotto. Saranno inoltre riportatiirisultati delle
verifiche effettuate, con I'obiettivo di individuare e correggere tempestivamente eventuali problema-
tiche riscontrate.

L’approccio adottato mira a promuovere il miglioramento continuo attraverso misure quantitative che
permettano di monitorare e valutare il progresso del progetto. Questo impegno costante per la qualita
si traduce in aggiornamenti regolari del documento, garantendo cosi la crescita e 'evoluzione sia del
prodotto che dei processi nel tempo.

1.2) Scopo del progetto

Lo scopo del progetto & quello di sviluppare un assistente virtuale intelligente in grado di centraliz-
zare e ottimizzare I’accesso alle informazioni aziendali. Grazie all’integrazione con piattaforme come
GitHub, Confluence e Jira, BuddyBot fornisce risposte precise e personalizzate alle richieste degli utenti
attraverso una chat in linguaggio naturale. Questo strumento mira a ridurre le inefficienze operative,
migliorare la produttivita e supportare il processo di , facilitando la condivisione e il
trasferimento delle conoscenze all’interno dei team.

1.3) Glossario

Per evitare ambiguita o incomprensioni riguardanti la terminologia utilizzata nei documenti, € stato
redatto un Glossario che raccoglie le definizioni dei termini specifici del dominio d’uso. Ogni termine
incluso nel Glossario ¢ accompagnato dal relativo significato, al fine di garantire chiarezza e uniformita
nella comprensione del testo.

La presenza di un termine nel Glossario viene segnalata direttamente nel documento adottando uno

.L’inserimento di un termine nel Glossario € considerato completo solo dopo averne fornito
una definizione chiara e accurata, contribuendo cosi alla coerenza del linguaggio e alla comprensione
condivisa tra tutti i lettori del documento.

6/46


https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#onboarding

Piano di Qualifica

1.4) Riferimenti

1.4.1) Normativi

« Norme di Progetto v1.0.0

« Documentazione e presentazione del capitolato d’appalto C9: BuddyBot
https://www.math.unipd.it/~tullio/IS-1/2024/Progetto/C9.pdf (Ultimo accesso: 2025-04-14)
https://www.math.unipd.it/~tullio/IS-1/2024/Progetto/C9p.pdf (Ultimo accesso: 2025-04-14)

Regolamento del progetto didattico:
https://www.math.unipd.it/~tullio/IS-1/2024/Dispense/PD1.pdf (Ultimo accesso: 2025-04-14)

1.4.2) Informativi

« ISO/EIC 9126
https://en.wikipedia.org/wiki/ISO/IEC_9126 (Ultimo accesso: 2025-04-14)

+ T7 - Qualita del software
https://www.math.unipd.it/~tullio/IS-1/2024/Dispense/T07.pdf (Ultimo accesso: 2025-04-14)

+ T8 - Qualita di processo
https://www.math.unipd.it/~tullio/IS-1/2024/Dispense/T08.pdf (Ultimo accesso: 2025-04-14)

« T9 - Verifica e validazione: introduzione
https://www.math.unipd.it/~tullio/IS-1/2024/Dispense/T09.pdf (Ultimo accesso: 2025-04-14)

« T10 - Verifica e validazione: analisi statica
https://www.math.unipd.it/~tullio/IS-1/2024/Dispense/T10.pdf (Ultimo accesso: 2025-04-14)

+ T11 - Verifica e validazione: analisi dinamica aka testing
https://www.math.unipd.it/~tullio/IS-1/2024/Dispense/T11.pdf (Ultimo accesso: 2025-04-14)

+ Glossario v2.0.0:
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario (Ultimo accesso:
2025-04-14)

7746


https://www.math.unipd.it/~tullio/IS-1/2024/Progetto/C9.pdf
https://www.math.unipd.it/~tullio/IS-1/2024/Progetto/C9p.pdf
https://www.math.unipd.it/~tullio/IS-1/2024/Dispense/PD1.pdf
https://en.wikipedia.org/wiki/ISO/IEC_9126
https://www.math.unipd.it/~tullio/IS-1/2024/Dispense/T07.pdf
https://www.math.unipd.it/~tullio/IS-1/2024/Dispense/T08.pdf
https://www.math.unipd.it/~tullio/IS-1/2024/Dispense/T09.pdf
https://www.math.unipd.it/~tullio/IS-1/2024/Dispense/T10.pdf
https://www.math.unipd.it/~tullio/IS-1/2024/Dispense/T11.pdf
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario

Piano di Qualifica

2) Obiettivi di qualita

Ogni

viene valutato mediante 'applicazione di metriche specifiche, la cui definizione &

dettagliata nelle sezioni Metriche di qualita del processo e Metriche di qualita del prodotto del docu-

mento Norme di Progetto v1.0.0. Queste sezioni delineano i criteri necessari affinché le metriche siano

considerate accettabili o eccellenti.

2.1) Qualita di processo

La qualita di processo rappresenta un’esigenza primaria nello sviluppo software, poiché per ottenere
un prodotto finale di alta qualita e indispensabile partire da un’applicazione rigorosa di

ben definite. Queste devono guidare tutte le attivita, pratiche e metodologie adottate lungo I'intero

ciclo di vita del software. La qualita di processo si fonda sull’idea che il raggiungimento di standard

elevati nel prodotto dipenda da controlli regolari e dall’ottimizzazione continua dei processi che lo

supportano, garantendo risultati che rispondano pienamente alle aspettative. 2.1.1) Processi primari

2.1.1.1) Fornitura

Metrica Nome Valore accettabile Valore Ottimo
M-PRC-EV Earned Value >0 <EAC
M-PRC-PV Planned Value >0 <
M-PRC-AC Actual Cost >0 <EAC
M-PRC-CV Cost Variance >-7.5% >0%
M-PRC-SV Schedule Variance >-7.5% > 0%

M-PRC-EAC Estimated at Completion | Errore del + 3% rispetto al BAC | Esattamente pari al BAC
M-PRC-ETC Estimate to Complete >0 <EAC

Tabella 1: Valori ideali e accettabili per ciascuna metrica relativa al processo di fornitura.

2.1.1.2) Sviluppo

Metrica Nome Valore accettabile Valore Ottimo
M-PRC-RSI Requirements Stability Index >75% 100%
M-PRC-SFI Structural Fan In - Va massimizzato
M-PRC-SFO Structural Fan-Out - Va minimizzato

Tabella 2: Valori ideali e accettabili per ciascuna metrica relativa al processo di sviluppo.

2.1.2) Processi di supporto

2.1.2.1) Documentazione

Metrica Nome Valore accettabile Valore Ottimo
M-PRC-GLP Indice Gulpease > 60% > 80%
M-PRC-CO Correttezza Ortografica 0 errori 0 errori

Tabella 3: Valori ideali e accettabili per ciascuna metrica relativa al processo di documentazione.

2.1.2.2) Verifica

8/

46



https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#processo
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#best-practice
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#budget-at-completion

Piano di Qualifica

Metrica Nome Valore accettabile | Valore Ottimo
M-PRC-CC Code Coverage >90% 100%
M-PRC-PTCP | Passed test cases percentage 100% 100%

Tabella 4: Valori ideali e accettabili per ciascuna metrica relativa al processo di verifica.

2.1.2.3) Gestione della qualita

Metrica

Nome

Valore accettabile

Valore Ottimo

M-PRC-QMS

Quality Metrics Satisfied

>85%

100%

Tabella 5: Valori ideali e accettabili per ciascuna metrica relativa al processo di gestione della qualita.

2.1.3) Processi organizzativi

2.1.3.1) Gestione dei processi

Metrica Nome Valore accettabile | Valore Ottimo
M-PRC-NCR Non-Calculated Risk <3 0
M-PRC-TE Temporal Efficiency <3 <1

Tabella 6: Valori ideali e accettabili per ciascuna metrica relativa al processo di gestione dei processi.

2.2) Qualita di prodotto

La qualita del prodotto si riferisce all'insieme delle caratteristiche di un’entita risultante dallo sviluppo
software, che ne determinano la capacita di soddisfare sia le esigenze esplicite che implicite. In altre
parole, rappresenta il grado in cui un prodotto risponde alle aspettative del cliente o agli standard
prestabiliti.

Essa implica una valutazione completa del software realizzato, concentrandosi su attributi fonda-
mentali come usabilita, funzionalita, affidabilita, manutenibilita e prestazioni generali. L’obiettivo &
garantire che il software non solo soddisfi le richieste del cliente e funzioni correttamente, ma lo faccia

in conformita con rigorosi standard di qualita.

2.2.1) Funzionalita

Metrica Nome Valore accettabile | Valore Ottimo
M-PRD-CRV Copertura Requisiti Vincolanti 100% 100%
M-PRD-CRD | Copertura Requisiti Desiderabili >50% 100%
M-PRD-CRO Copertura Requisiti Opzionali = 0% = 50%

Tabella 7: Valori ideali e accettabili per ciascuna metrica relativa alle funzionalita del prodotto.

2.2.2) Affidabilita
Metrica Nome Valore accettabile | Valore Ottimo
M-PRD-CC Code Coverage > 80% 100%
M-PRD-BC Coverage = 50% > 80%
M-PRD-SC Statement Coverage = 60% =80%
M-PRD-FD Failure Density 100% 100%

Tabella 8: Valori ideali e accettabili per ciascuna metrica relativa l'affidabilita del prodotto.

9/46



https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#branch

Piano di Qualifica

2.2.3) Usabilita

Metrica Nome Valore accettabile | Valore Ottimo
M-PRD-FU Facilita di Utilizzo < 4 click < 2 click
M-PRD-TA Tempo di Apprendimento < 10 minuti < 5 minuti

Tabella 9: Valori ideali e accettabili per ciascuna metrica relativa l'usabilita del prodotto.

2.2.4) Efficienza

Metrica

Nome

Valore accettabile

Valore Ottimo

M-PRD-UR

Utilizzo Risorse

>75%

100%

Tabella 10: Valori ideali e accettabili per ciascuna metrica relativa l'efficienza del prodotto.

2.2.5) Manutenibilita

Metrica Nome Valore accettabile | Valore Ottimo
M-PRD-CP Complessita Ciclomatica <10 <5
M-PRD-CS Code Smell 0 0
M-PRD-MD Module Dependency <30% <10%

Tabella 11: Valori ideali e accettabili per ciascuna metrica relativa la manutenibilita del prodotto.

10/ 46




Piano di Qualifica

3) Strategie di testing

Questa sezione riassume ed elenca i test eseguiti sul prodotto, garantendo completezza, correttezza e

coerenza. In questo modo si dimostra il soddisfacimento dei requisiti utente, specificati nel capitolato

d’appalto, e dei requisiti definiti nel documento . Verranno effettuate le seguenti

tipologie di test:

Test di unita: sono il punto di partenza della strategia di testing. Vengono verificate singole unita di
codice con 'obiettivo di verificare che ciascun modulo funzioni correttamente, in maniera tale che
ogni unita produca risultati corretti in base ai dati di input inviati.

Test di integrazione: vengono eseguiti dopo il completamento/superamento dei test di unita. Veri-
ficano l'interazione tra componenti software integrate, rilevando difetti nelle interfacce e nei flussi
di controllo. L’obiettivo principale di questi test € assicurare che i dati scambiati tra le componenti
siano conformi alle specifiche e che i flussi di controllo funzionino regolarmente.

Test di sistema: vengono eseguiti dopo il completamento dei Test di integrazione e precedono il
collaudo. Si occupano di verificare l'intero sistema come unita, valutando la conformita rispetto ai
requisiti presenti nel documento «Analisi dei Requisiti». L’obiettivo ¢ quello di identificare eventuali
errori (che compromettono il corretto funzionamento del sistema) e garantire che il SW soddisfi le
aspettative dell’utente.

Test di accettazione: corrispondono con I'ultima fase della strategia di testing, verificano e accertano
il soddisfacimento dei requisiti utente (requisiti del capitolato d’appalto). Questa fase di collaudo
viene effettuata in presenza del committente.

3.1) Struttura tabelle

A partire dalla sezione successiva verranno inseriti i test svolti riepilogati in una tabella. Quest’ultima

sara composta da:

Codice: un breve identificativo del test eseguito. Avranno tutti questo scheletro:

[TIPOLOGIA]-[NUMERO]
» «Tipologia» € rappresentato dalla lettera iniziale del tipo di test eseguito
— TU: Test di unita.
- TI: Test di integrazione.
— TS8: Test di sistema.
— TA: Test di accettazione.
» «Numero»: rappresenta 'identificativo numerico assegnato a ciascun test eseguito, indicandone
la sequenza.

+ Descrizione: breve spiegazione del test effettuato

« Esito: risultato del test, possono essere 3:

» V (VERIFICATO): test completato e andato a buon fine.

» NV (NON VERIFICATO): test completato ma non andato a buon fine.

» NI (NON IMPLEMENTATO): non é stato predisposto alcun test per la verifica della funzionalita
specifica.

11/ 46


https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#analisi-dei-requisiti

Piano di Qualifica

3.2) Test di unita

I test di unita sono concepiti per verificare il corretto funzionamento delle singole componenti del
codice. Per «unita» si intendono funzioni, classi o, pi in generale, qualsiasi entita autonoma incari-
cata di svolgere compiti specifici all’interno del software. Per implementare in modo efficace questa
tipologia di test, abbiamo adottato il framework di unit testing Jest, che ci ha permesso di scrivere
test chiari e manutenibili. A supporto della qualita del codice, abbiamo inoltre integrato ESLint, uno
strumento utile per rilevare errori sintattici e problemi stilistici, garantendo cosi uno standard elevato
durante lo sviluppo.

Codice Descrizione Stato
TU-01 | Verificare che i componenti Header, Navbar e ChatWindow siano presenti \%
nel DOM quando il componente Home viene renderizzato. (frontend)
TU-02 | Verificare che il componente Header venga renderizzato correttamente \%
con il tema chiaro e che 'immagine venga aggiornata al caricamento.
(frontend)
TU-03 | Verificare che il componente Navbar renderizzi correttamente i link esterni \%

per GitHub, Jira e Confluence. (frontend)

TU-04 | Verificare che le icone di FontAwesome per GitHub, Jira e Confluence siano \%
presenti nel componente Navbar. (frontend)

TU-05 | Verificare che il componente Navbar contenga lo switcher del tema. \%
(frontend)
TU-06 Verificare che le icone del Sole e della Luna siano correttamente visualiz- A%

zate in base al tema. (frontend)

TU-07 | Verificare che il pulsante di cambio tema modifichi correttamente il tema \%
tra «light» e «dark». (frontend)

TU-08 Verificare che I’Adapter venga creato una sola volta quando il componente \%
ChatWindow viene renderizzato. (frontend)

TU-09 Verificare che i componenti Chat e InputForm siano correttamente rende- A%
rizzati. (frontend)

TU-10 | Verifica che il componente InputForm si renderizzi correttamente e gesti- \%
sca i cambiamenti di input. (frontend)

TU-11 | Verifica che il messaggio non venga inviato se il testo € vuoto o contiene \%
solo spazi. (frontend)

TU-12 | Verifica che l'altezza del textarea venga regolata dinamicamente durante \%
la scrittura. (frontend)

TU-13 | Verifica che il componente Chat venga renderizzato correttamente. (fron- \%
tend)
TU-14 Verifica lo stato di caricamento quando loadingHistory é true. (frontend) \%
TU-15 | Verifica che venga chiamato loadHistory quando il pulsante «Load more» \%
viene cliccato. (frontend)
TU-16 | Verifica che venga mostrato un alert di errore quando errorHistory e true. \%
(frontend)
TU-17 | Verifica che il pulsante «Load more» venga mostrato quando ci sono piu \%

messaggi. (frontend)

12/ 46



Piano di Qualifica

TU-18 | Verifica che il componente ChatQA venga renderizzato correttamente con \%
domanda e risposta. (frontend)

TU-19 | Verifica che il componente Bubble venga renderizzato correttamente per \%
un messaggio utente. (frontend)

TU-20 | Verifica che il componente Bubble venga renderizzato correttamente per \%
un messaggio bot. (frontend)

TU-21 Verifica che il componente Bubble mostri un alert quando c’¢ un errore. \%
(frontend)
TU-22 | Verifica che il componente Bubble mostri un indicatore di caricamento \%

quando loading é true. (frontend)

TU-23 | Verifica il comportamento di visibilita del tooltip in modalita mobile. A
(frontend)
TU-24 | Verifica che l’alert venga renderizzato correttamente con il titolo e la de- \%

scrizione e che abbia le classi appropriate in base al tipo di alert. (frontend)

TU-25 | Verifica che l'avatar venga renderizzato correttamente, mostrando \%
I'immagine se presente o un fallback altrimenti. (frontend)

TU-26 | Verifica che il bottone venga renderizzato con il testo corretto e con le \%
classi appropriate per dimensione e stile. (frontend)

TU-27 | Verifica che ErrorAlert mostri il messaggio corretto in base al codice di \%
stato e che venga visualizzato un timestamp. (frontend)

TU-28 | Verifica che venga renderizzato un elemento di caricamento (spinner). \%
(frontend)
TU-29 | Verifica che I'indicatore di caricamento (bouncing dots) venga renderiz- \%

zato correttamente. (frontend)

TU-30 | Verifica che il componente renderizzi correttamente il contenuto markdo- \%
wn, anche con contenuti vuoti. (frontend)

TU-31 | Verifica che I'avatar dell’utente o del bot venga renderizzato correttamente \%
con I'immagine o il fallback. (frontend)

TU-32 Verifica che un timestamp venga formattato correttamente. (frontend) \%

TU-33 Verifica che vengano generati ID unici e incrementali. (frontend) \%

TU-34 Verifica che LOAD_HISTORY_START imposti correttamente lo stato di \%

caricamento. (frontend)

TU-35 | Verifica che LOAD_HISTORY_SUCCESS aggiorni i messaggi e lo stato. \%
(frontend)

TU-36 Verifica che LOAD_HISTORY_ERROR imposti correttamente lerrore. A%
(frontend)

TU-37 | Verifica che ADD_MESSAGE_START imposti correttamente il caricamen- \%

to del messaggio. (frontend)
TU-38 | Verifica che ADD_MESSAGE_SUCCESS aggiorni il messaggio con succes- \%
so. (frontend)

TU-39 | Verifica che ADD_MESSAGE_ERROR aggiorni l'errore nel messaggio. \%
(frontend)

TU-40 Verifica che SCROLL_DOWN imposti il flag hasToScroll. (frontend) \%

13/ 46




Piano di Qualifica

TU-41 | Verifica che i messaggi non vengano modificati con ID non corrispondenti \Y
in ADD_MESSAGE_SUCCESS e ADD_MESSAGE_ERROR. (frontend)
TU-42 Verifica che lo stato rimanga invariato per azioni sconosciute. (frontend) \%
TU-43 | Verifica che il componente ChatProvider renderizzi correttamente i figli. \%
(frontend)
TU-44 | Verifica che il ChatProvider carichi la cronologia dei messaggi al montag- \%

gio. (frontend)

TU-45 | Verifica che il messaggio venga inviato correttamente e che la risposta \%
venga gestita. (frontend)

TU-46 | Verifica che venga gestito un errore quando 'invio di un messaggio fallisce. \%
(frontend)
TU-47 | Verifica che venga gestito correttamente un errore nel caricamento della \%

cronologia. (frontend)

TU-48 | Verifica che venga lanciato un errore se useChat viene usato fuori dal \%
ChatProvider. (frontend)

TU-49 Verifica che vengano caricati correttamente i messaggi piu vecchi. (fron- A%
tend)
TU-50 | Verifica che i messaggi con contenuti troppo lunghi vengano marcati come \%

errore. (frontend)

TU-51 | Verifica che venga inviato un errore con codice specifico se si verifica un \%
CustomError. (frontend)

TU-52 | Verifica che il componente ThemeProvider renderizzi correttamente i figli. \%
(frontend)
TU-53 Verifica del recupero e adattamento della cronologia. (frontend) \%
TU-54 Verifica del recupero e adattamento di una risposta. (frontend) \%
TU-55 | Gestione dell’errore quando il recupero di una risposta fallisce. (frontend) \%
TU-56 Verifica la generazione dell’ID quando data.id & mancante. (frontend) \Y%
TU-57 Verifica rilancio di CustomError se lanciato da fetchHistory. (frontend) A%
TU-58 Verifica rilancio di CustomError se lanciato da fetchQuestion. (frontend) \Y%
TU-59 | Verifica che fetchHistory e fetchQuestion recuperino correttamente la \%
cronologia quando la risposta dell’API ¢ positiva. (frontend)
TU-60 | Verifica che venga lanciato un errore se la risposta dell’API non ¢ «ok». \
(frontend)
TU-61 | Verifica che venga gestito correttamente un errore di rete durante la \%
chiamata a fetchHistory e a fetchQuestion. (frontend)
TU-62 Verifica che venga gestito correttamente un errore di timeout o interru- A%
zione della richiesta in fetchHistory e in fetchQuestion. (frontend)
TU-63 | Verifica che venga lanciato un errore di tipo SERVER quando il codice di \%
stato della risposta & 500 o superiore. (frontend)
TU-64 | Verifica che venga lanciato un errore di tipo CONNESSIONE per errori con \%
codice di stato tra 400 e 499. (frontend)
TU-65 Verificare che il controller FetchHistoryController, una volta ricevuto \Y%

un messaggio sulla coda fetch_queue, richiami correttamente il metodo

14/ 46




Piano di Qualifica

fetchStoricoChat del caso d’uso e restituisca una lista di oggetti ChatDTO
costruita a partire dai Chat ottenuti. (chat history)

TU-66 | Verificare che il service FetchHistoryService invochi correttamente il \%
metodo fetchStoricoChat dell’adapter con i parametri attesi e restituisca il
risultato senza modificarlo. (chat history)

TU-67 | Verificare che I'adapter FetchHistoryAdapter richiami il metodo fetchSto- \%
ricoChat del repository con i parametri corretti e trasformi i dati ricevuti in
oggetti del dominio Chat, mappando correttamente i campi. (chat history)

TU-68 | Verificare che il metodo fetchStoricoChat del repository recuperi corret- \%
tamente lo storico delle chat dal database, gestendo sia il caso in cui I'id
dell’ultima chat sia presente (con query basata su answerDate), sia il caso
in cui non lo sia (recupero degli ultimi N record piu recenti). (chat history)

TU-69 | Verificare che il controller ChatConsumer, al ricevimento di un messaggio \%

sulla coda chat_message, trasformi correttamente il CreateChatDTO in un

InsertChatCmd, invochi il metodo insertChat del caso d’uso e restituisca
un ChatDTO. (chat history)

TU-70 | Verificare che il service InsertChatService invochi correttamente il metodo \%

insertChat dell’adapter (implementazione della Port Out) con i parametri

ricevuti e restituisca il risultato senza applicare ulteriori trasformazioni.
(chat history)

TU-71 | Verificare che adapter InsertChatAdapter invochi il metodo insertChat \%

del repository con i parametri estratti dal InsertChatCmd e restituisca un

oggetto Chat costruito correttamente a partire dalla ChatEntity restituita.
(chat history)

TU-72 | Verificare che il metodo insertChat del repository crei correttamente una \%
nuova istanza di ChatEntity utilizzando anche la data dell’ultimo fetch
delle informazioni (LastUpdateEntity) e la salvi nel database. (chat history)

TU-73 | Verificare che il controller InsertLastUpdateController, al ricevimento di \%

un messaggio sulla coda lastFetch_queue, costruisca correttamente un

LastUpdateCmd, invochi il metodo insertLastRetrieval del service e resti-
tuisca il risultato booleano. (chat history)

TU-74 | Verificare che il service InsertLastUpdateService invochi il metodo inser- \%
tLastRetrieval dell’adapter (implementazione della Port Out) con i dati
forniti e restituisca il valore booleano risultante. (chat history)

TU-75 | Verificare che 'adapter InsertLastUpdateAdapter invochi il metodo inser- \%
tLastRetrieval del repository ChatRepository passando correttamente la
data di LastFetch ricevuta nel comando. (chat history)

TU-76 | Verificare che il metodo insertLastRetrieval del repository aggiorni corret- \%
tamente il record LastUpdateEntity esistente con la nuova data fornita.
(chat history)
TU-77 | Verificare che il metodo insertLastRetrieval del repository crei un nuovo \%

record LastUpdateEntity nel caso in cui non ne esista uno. (chat history)

TU-78 | Verificare che il controller FetchLastUpdateController, al ricevimento di \%
un messaggio sulla coda getLastUpdate_queue, invochi il metodo fetchLa-

15/ 46




Piano di Qualifica

stUpdate del service e restituisca un LastUpdateDTO contenente il valore
corretto di lastFetch. (chat history)

TU-79 | Verificare che il service FetchLastUpdateService invochi correttamente il \%
metodo fetchLastUpdate dell’adapter (implementazione della Port Out) e
restituisca un oggetto LastUpdate con il valore atteso. (chat history)

TU-80 | Verificare che I'adapter fetchLastUpdateAdapter invochi il metodo fet- \%
chLastUpdate del repository ChatRepository e trasformi correttamente la
LastUpdateEntity in un oggetto LastUpdate del dominio. (chat history)

TU-81 | Verificare che il metodo fetchLastUpdate del repository recuperi corretta- \%
mente il record LastUpdateEntity con id 1 dal database e lo restituisca.
(chat history)
TU-82 | Verificare che il metodo insertChat del repository lanci un errore se il \%

record LastUpdateEntity non e presente nel database. (chat history)

TU-83 | Verificare che il metodo fetchStoricoChat del repository lanci un errore se \%
I'id della chat specificata non corrisponde a nessun record. (chat history)

TU-84 | Verificare che il metodo insertLastRetrieval del repository restituisca false \%
nel caso si verifichi un errore durante I'operazione di aggiornamento o
inserimento. (chat history)

TU-85 | Verificare che il metodo fetchLastUpdate del repository lanci un errore se \%
il record LastUpdateEntity non € presente nel database. (chat history)

TU-86 | Verificare che il controller recuperi e memorizzi corretta- \%
mente le informazioni di Jira con boardld e lastUpdate
(JiraFetchAndStoreController.spec.ts). (information vector db)

TU-87 | Verificare che il controller recuperi e memorizzi le informazioni di Jira \%
senza lastUpdate (JiraFetchAndStoreController.spec.ts). (information vec-
tor db)
TU-88 | Verificare che il controller gestisca gli errori e restituisca un risultato di \%

errore (JiraFetchAndStoreController.spec.ts). (information vector db)

TU-89 | Verificare che il controller recuperi correttamente le informazioni \%
(RetrievalController.spec.ts). (information vector db)

TU-90 | Verificare che il controller gestisca gli errori durante il recupero delle \%
informazioni (RetrievalController.spec.ts). (information vector db)

TU-91 Verificare che il controller recuperi e memorizzi correttamente le \%
informazioni di GitHub con la lista dei repository e lastUpdate
(GithubFetchAndStoreController.spec.ts). (information vector db)

TU-92 | Verificare che il controller recuperi e memorizzi le informazioni di GitHub \%
senza lastUpdate (GithubFetchAndStoreController.spec.ts). (information
vector db)
TU-93 | Verificare che il controller gestisca gli errori e restituisca un risultato di \%

errore (GithubFetchAndStoreController.spec.ts). (information vector db)

TU-94 | Verificare che il controller recuperi e memorizzi cor- \%
rettamente le informazioni di Confluence con lastUpdate

(ConfluenceFetchAndStoreController.spec.ts). (information vector db)

16/ 46




Piano di Qualifica

TU-95 | Verificare che il controller recuperi e memorizzi le informazioni di Con- \Y
fluence senza lastUpdate (ConfluenceFetchAndStoreController.spec.ts).
(information vector db)

TU-96 | Verificare che il controller gestisca gli errori e restituisca un risultato di \%
errore (ConfluenceFetchAndStoreController.spec.ts). (information vector
db)
TU-97 | Verificare che il servizio recuperi e memorizzi correttamente i documenti \%

di Confluence (ConfluenceService.spec.ts). (information vector db)

TU-98 | Verificare che il servizio gestisca gli errori durante il recupero dei docu- \%
menti dal’API di Confluence (ConfluenceService.spec.ts). (information
vector db)

TU-99 | Verificare che il servizio gestisca gli errori durante la memorizzazione dei \%
documenti di Confluence (ConfluenceService.spec.ts). (information vector

db)

TU-100 | Verificare che il servizio recuperi correttamente le informazioni utilizzan- \%
do la porta di retrieval (RetrievalService.spec.ts). (information vector db)

TU-101 | Verificare che il servizio gestisca correttamente i risultati vuoti \%
(RetrievalService.spec.ts). (information vector db)

TU-102 | Verificare che il servizio recuperi e memorizzi correttamente le informa- \%
zioni di GitHub (GithubService.spec.ts). (information vector db)

TU-103 | Verificare che il servizio gestisca gli errori durante il recupero delle infor- \%
mazioni da GitHub (GithubService.spec.ts). (information vector db)

TU-104 | Verificare che il servizio gestisca gli errori durante la memorizzazione delle A
informazioni di GitHub (GithubService.spec.ts). (information vector db)

TU-105 | Verificare che il servizio gestisca correttamente i risultati vuoti dalle chia- \%
mate API (GithubService.spec.ts). (information vector db)

TU-106 | Verificare che il servizio recuperi e memorizzi correttamente le informa- \%
zioni di Jira (JiraService.spec.ts). (information vector db)

TU-107 | Verificare che il servizio gestisca gli errori durante il recupero delle infor- \%
mazioni dall’API di Jira (JiraService.spec.ts). (information vector db)

TU-108 | Verificare che il servizio gestisca gli errori durante la memorizzazione delle \%
informazioni di Jira (JiraService.spec.ts). (information vector db)

TU-109 | Verificare che [Padattatore memorizzi correttamente piu ticket \%
(JiraStoreAdapter.spec.ts). (information vector db)

TU-110 | Verificare che 'adattatore gestisca correttamente un array di ticket vuoto \%
(JiraStoreAdapter.spec.ts). (information vector db)

TU-111 | Verificare che 'adattatore fallisca e ritorni immediatamente se il salvatag- \%
gio di un ticket fallisce (JiraStoreAdapter.spec.ts). (information vector db)

TU-112 | Verificare che l’adattatore gestisca gli errori lanciati dal repository \%
(JiraStoreAdapter.spec.ts). (information vector db)

TU-113 | Verificare che i ticket vengano recuperati e trasformati correttamente \%
(JiraAPIAdapter.spec.ts). (information vector db)

TU-114 | Verificare che i campi mancanti vengano gestiti correttamente \Y%
(JiraAPIAdapter.spec.ts). (information vector db)

17/ 46




Piano di Qualifica

TU-115 | Verificare che i giorni trascorsi vengano estratti correttamente da lastUp- \%
date (JiraAPIAdapter.spec.ts). (information vector db)

TU-116 | Verificare che gli errori del’API vengano gestiti correttamente \%
(JiraAPIAdapter.spec.ts). (information vector db)

TU-117 | Verificare che la lista di issue vuota venga gestita correttamente \%
(JiraAPIAdapter.spec.ts). (information vector db)

TU-118 | Verificare che il testo venga estratto correttamente dal contenuto ADF \%
(JiraAPIAdapter.spec.ts). (information vector db)

TU-119 | Verificare che le issue vengano recuperate con il JOL corretto quando viene \%
fornito daysBack (JiraAPIRepository.spec.ts). (information vector db)

TU-120 | Verificare che tutte le issue vengano recuperate quando daysBack non ¢ \%
fornito (JiraAPIRepository.spec.ts). (information vector db)

TU-121 | Verificare che la paginazione venga gestita correttamente \%
(JiraAPIRepository.spec.ts). (information vector db)

TU-122 | Verificare che la risposta vuota venga gestita correttamente \%
(JiraAPIRepository.spec.ts). (information vector db)

TU-123 | Verificare che gli errori del’API vengano gestiti correttamente \%
(JiraAPIRepository.spec.ts). (information vector db)

TU-124 | Verificare che i documenti vengano recuperati e trasformati correttamente \%
(ConfluenceAPIAdapter.spec.ts). (information vector db)

TU-125 | Verificare che i dati mancanti del documento vengano gestiti correttamen- \%
te (ConfluenceAPIAdapter.spec.ts). (information vector db)

TU-126 | Verificare che gli errori del’API vengano gestiti correttamente \%
(ConfluenceAPIAdapter.spec.ts). (information vector db)

TU-127 | Verificare che le pagine vengano recuperate con l'intervallo di tempo \%
predefinito (ConfluenceAPIRepository.spec.ts). (information vector db)

TU-128 | Verificare che le pagine vengano recuperate con un intervallo di tempo \%
specificato (ConfluenceAPIRepository.spec.ts). (information vector db)

TU-129 | Verificare che la paginazione venga gestita correttamente A%
(ConfluenceAPIRepository.spec.ts). (information vector db)

TU-130 | Verificare che gli errori di rete vengano gestiti correttamente \%
(ConfluenceAPIRepository.spec.ts). (information vector db)

TU-131 | Verificare che le risposte non OK vengano gestite correttamente (errore a \%
livello di API) (ConfluenceAPIRepository.spec.ts). (information vector db)

TU-132 | Verificare che tutti i documenti vengano memorizzati con successo \Y%
(ConfluenceStoreAdapter.spec.ts). (information vector db)

TU-133 | Verificare che l'array di documenti vuoto venga gestito correttamente \%
(ConfluenceStoreAdapter.spec.ts). (information vector db)

TU-134 | Verificare che gli errori di memorizzazione per i singoli documenti ven- \%
gano gestiti correttamente (ConfluenceStoreAdapter.spec.ts). (information
vector db)
TU-135 | Verificare che gli errori del repository vengano gestiti correttamente \%

(ConfluenceStoreAdapter.spec.ts). (information vector db)

18/ 46




Piano di Qualifica

TU-136 | Verifica che fetchGithubCommitsInfo recuperi e trasformi correttamente i \%
commit (GithubAPIAdapter.spec.ts). (information vector db)

TU-137 | Verifica che fetchGithubCommitsInfo gestisca piu repository \%
(GithubAPIAdapter.spec.ts). (information vector db)

TU-138 | Verifica che fetchGithubFilesInfo recuperi e trasformi correttamente i file \%
(GithubAPIAdapter.spec.ts). (information vector db)

TU-139 | Verifica che fetchGithubFilesInfo gestisca file di grandi dimensioni utiliz- \%
zando contenuti grezzi (GithubAPIAdapter.spec.ts). (information vector

db)

TU-140 | Verifica che fetchGithubFilesInfo salti i file binari \Y%
(GithubAPIAdapter.spec.ts). (information vector db)

TU-141 | Verifica che fetchGithubFilesInfo gestisca gli errori di file non trovato in A
modo corretto (GithubAPIAdapter.spec.ts). (information vector db)

TU-142 | Verifica che fetchGithubPullRequestsInfo recuperi e trasformi corretta- \%
mente le pull request (GithubAPIAdapter.spec.ts). (information vector db)

TU-143 | Verifica che fetchGithubRepositorylInfo recuperi e trasformi correttamente \%
le informazioni del repository (GithubAPIAdapter.spec.ts). (information
vector db)

TU-144 | Verifica che fetchGithubRepositorylnfo filtri i repository in base alla data \%
di ultimo aggiornamento (GithubAPIAdapter.spec.ts). (information vector

db)

TU-145 | Verifica che fetchGithubWorkflowInfo recuperi e trasformi correttamente \%
le informazioni del workflow (GithubAPIAdapter.spec.ts). (information
vector db)

TU-146 | Verifica che fetchGithubWorkflowRuns recuperi e trasformi correttamente \%
le esecuzioni del workflow (GithubAPIAdapter.spec.ts). (information vec-

tor db)

TU-147 | Verifica che fetchGithubWorkflowRuns gestisca gli errori durante il recu- \Y
pero delle esecuzioni del workflow (GithubAPIAdapter.spec.ts). (informa-
tion vector db)

TU-148 | Verifica che fetchCommitsInfo recuperi i commit con i parametri di default \%
(GithubAPIRepository.spec.ts). (information vector db)

TU-149 | Verifica che fetchCommitsInfo recuperi i commit con il parametro lastUp- \%
date (GithubAPIRepository.spec.ts). (information vector db)

TU-150 | Verifica che fetchCommitsInfo gestisca gli errori durante il recupero dei \%
commit (GithubAPIRepository.spec.ts). (information vector db)

TU-151 | Verifica che fetchCommitModifiedFilesInfo recuperi i file modificati per \%
un commit (GithubAPIRepository.spec.ts). (information vector db)
TU-152 | Verifica che fetchCommitModifiedFilesInfo gestisca gli errori durante il A
recupero dei file modificati (GithubAPIRepository.spec.ts). (information
vector db)
TU-153 | Verifica che fetchFileInfo recuperi le informazioni del file A

(GithubAPIRepository.spec.ts). (information vector db)

19/ 46




Piano di Qualifica

TU-154 | Verifica che fetchFileInfo gestisca gli errori durante il recupero delle infor- \Y
mazioni del file (GithubAPIRepository.spec.ts). (information vector db)
TU-155 | Verifica che fetchRawFileContent recuperi il contenuto grezzo del file \%
(GithubAPIRepository.spec.ts). (information vector db)
TU-156 | Verifica che fetchRawFileContent gestisca gli errori durante il recupero \%
del contenuto grezzo del file (GithubAPIRepository.spec.ts). (information
vector db)
TU-157 | Verifica che fetchRawFileContent lanci un errore quando la risposta non & \%
una stringa (GithubAPIRepository.spec.ts). (information vector db)
TU-158 | Verifica che fetchPullRequestsInfo recuperi le informazioni delle pull re- \%
quest (GithubAPIRepository.spec.ts). (information vector db)
TU-159 | Verifica che fetchPullRequestsInfo gestisca gli errori durante il recupero \%
delle pull request (GithubAPIRepository.spec.ts). (information vector db)
TU-160 | Verifica che fetchPullRequestModifiedFiles recuperi i file modificati per \%
una pull request (GithubAPIRepository.spec.ts). (information vector db)
TU-161 | Verifica che fetchPullRequestModifiedFiles gestisca gli errori durante il \%
recupero dei file modificati (GithubAPIRepository.spec.ts). (information
vector db)
TU-162 | Verifica che fetchPullRequestReviewComments recuperi i commenti di \%
revisione per una pull request (GithubAPIRepository.spec.ts). (information
vector db)
TU-163 | Verifica che fetchPullRequestReviewComments gestisca gli errori durante \%

il recupero dei commenti di revisione (GithubAPIRepository.spec.ts). (in-
formation vector db)

TU-164 | Verifica che fetchRepositorylnfo recuperi le informazioni del repository \%
(GithubAPIRepository.spec.ts). (information vector db)

TU-165 | Verifica che fetchRepositoryInfo gestisca gli errori durante il recupero \%
delle informazioni del repository (GithubAPIRepository.spec.ts). (informa-
tion vector db)

TU-166 | Verifica che fetchWorkflowsInfo recuperi le informazioni dei workflow \%
(GithubAPIRepository.spec.ts). (information vector db)

TU-167 | Verifica che fetchWorkflowsInfo gestisca gli errori durante il recupero \%
delle informazioni dei workflow (GithubAPIRepository.spec.ts). (informa-
tion vector db)

TU-168 | Verifica che fetchWorkflowRuns recuperi le esecuzioni dei workflow senza \%
il parametro since_created (GithubAPIRepository.spec.ts). (information
vector db)

TU-169 | Verifica che fetchWorkflowRuns recuperi le esecuzioni dei workflow con \%
il parametro since_created (GithubAPIRepository.spec.ts). (information
vector db)

TU-170 | Verifica che fetchWorkflowRuns gestisca gli errori durante il recupero \%
delle esecuzioni dei workflow (GithubAPIRepository.spec.ts). (information
vector db)

TU-171 | Verificare che tutte le informazioni di GitHub vengano memorizzate con \%
successo (GithubStoreAdapter.spec.ts). (information vector db)

20/ 46




Piano di Qualifica

TU-172 | Verificare che gli errori vengano gestiti durante la memorizzazione delle \Y
informazioni (GithubStoreAdapter.spec.ts). (information vector db)

TU-173 | Verificare che gli array vuoti per qualsiasi tipo di informazione di GitHub \%
vengano gestiti correttamente (GithubStoreAdapter.spec.ts). (information
vector db)
TU-174 | Verificare che i fallimenti parziali durante la memorizzazione delle \%

informazioni vengano gestiti correttamente (GithubStoreAdapter.spec.ts).
(information vector db)

TU-175 | Verificare che le entita del repository vengano convertite in informazioni \%
di dominio (Retrieval.adapter.spec.ts). (information vector db)

TU-176 | Verificare che i risultati wvuoti vengano gestiti correttamente \%
(Retrieval.adapter.spec.ts). (information vector db)

TU-177 | Verificare che gli errori lanciati dal repository vengano gestiti corretta- \%
mente (Retrieval.adapter.spec.ts). (information vector db)

TU-178 | Verifica che storeInformation memorizzi correttamente le informazioni \Y%
(Qdrant-information-repository.spec.ts). (information vector db)

TU-179 | Verifica che storelnformation gestisca contenuti lunghi suddividendoli \%
(Qdrant-information-repository.spec.ts). (information vector db)

TU-180 | Verifica che storeInformation gestisca gli errori durante la memorizzazione \%
(Qdrant-information-repository.spec.ts). (information vector db)

TU-181 | Verifica che retrieveRelevantInfo recuperi correttamente le informazioni \%
rilevanti (Qdrant-information-repository.spec.ts). (information vector db)

TU-182 | Verifica che retrieveRelevantInfo gestisca gli errori durante il recupero \%
(Qdrant-information-repository.spec.ts). (information vector db)

TU-183 | Verifica che splitDocuments divida correttamente i documenti (Qdrant- \%
information-repository.spec.ts). (information vector db)

TU-184 | Verifica che splitDocuments gestisca gli errori durante la divisione \%
(Qdrant-information-repository.spec.ts). (information vector db)

TU-185 | Verifica che similaritySearch esegua correttamente la ricerca di similarita \%
(Qdrant-information-repository.spec.ts). (information vector db)

TU-186 | Verifica che similaritySearch gestisca gli errori durante la ricerca di simi- \%
larita (Qdrant-information-repository.spec.ts). (information vector db)

TU-187 | Verifica che deleteByMetadata elimini correttamente i documenti in base ai \%
metadati (Qdrant-information-repository.spec.ts). (information vector db)

TU-188 | Verifica che deleteByMetadata gestisca gli errori durante I’eliminazione \%
(Qdrant-information-repository.spec.ts). (information vector db)

TU-189 | Verificare che ApiController.getStorico trasformi correttamen- A%

te 1 parametri query in un RequestChatCMD e invochi

GetStoricoUseCase.execute() restituendo un array di ChatDTO. (api
gateway)

TU-190 | Verificare che GetStoricoService.execute() invochi \
StoricoPort.getStorico() con i parametri ricevuti e restituisca i dati

senza modifiche. (api gateway)

21/ 46




Piano di Qualifica

TU-191 | Verificare che StoricoMessageAdapter.getStorico() trasformi i dati A%
RabbitMQ in oggetti Chat del dominio, mappando correttamente content
e timestamp. (api gateway)

TU-192 | Verificare che ApiController.getRisposta trasformi il body della richie- A%
sta in un RegAnswerCmd, invochi GetChatUseCase.execute(), e restituisca
un ChatDTO. (api gateway)

TU-193 | Verificare che GetRispostaService.execute() invochi \Y%
ChatBotPort.getRisposta() e StoricoPort.postStorico(), e restitui-
sca il risultato di quest’ultimo. (api gateway)

TU-194 | Verificare che MessageAdapter.getRisposta() trasformi la risposta Rab- A%
bitMQ in un ProvChat, preservando question, answer, e timestamp. (api
gateway)
TU-195 | Verificare che StoricoMessageAdapter.postStorico() costruisca un og- A%

getto Chat dal ProvChat con i campi Message annidati (content +
timestamp). (api gateway)

TU-196 | Verificare che StoricoMessageAdapter.postUpdate() invochi \%
HistoryService.sendMessage() con un LastUpdateCMD contenente la
data corretta. (api gateway)

TU-197 | Verificare che StoricoMessageAdapter.getLastUpdate() trasformi la ri- \Y%
sposta RabbitMQ in un LastUpdateCMD. (api gateway)

TU-198 | Verificare che StoricoMessageAdapter.getStorico() lanci un errore se \%
la risposta RabbitMQ non contiene question.content o answer.content.

(api gateway)

TU-199 | Verificare che GetRispostaService.execute() lanci un errore se \Y%
ChatBotPort.getRisposta() restituisce un oggetto senza timestamp. (api
gateway)

TU-200 | Verificare che la classe ReqAnswerCmd inizializzi correttamente i suoi \%
campi privati e li esponga attraverso i getter appropriati, preservando i
riferimenti agli oggetti originali. (chatbot)

TU-201 | Verificare che l'entita Chat memorizzi correttamente la domanda e la \%
risposta e li restituisca attraverso i metodi getter, funzionando anche con
stringhe vuote. (chatbot)

TU-202 | Verificare che l'entita Metadata memorizzi correttamente i valori di origin, \%
type e originlD e li esponga attraverso getter e accesso diretto alle pro-
prieta. (chatbot)

TU-203 | Verificare che I'entita Information mantenga i riferimenti alla stringa di \%
content e all’oggetto Metadata durante la sua creazione, esponendo i valori
attraverso getter appropriati. (chatbot)

Tabella 12: Stato dei test di unita

22/ 46




Piano di Qualifica

3.3) Test di integrazione

I test di accettazione sono finalizzati a garantire che il prodotto soddisfi i utente come
specificati nel . Essi vengono eseguiti in presenza del committente e dimostrano la confor-
mita del prodotto alle aspettative attraverso I’esecuzione dei casi di prova previsti nel capitolato. I
superamento positivo di tali test durante il collaudo finale generalmente conduce al rilascio definitivo

del prodotto.
Codice Descrizione Stato
TI-01 Verificare che il flusso fetchChatHistory nel controller FetchHistoryCon- \%

troller richiami correttamente il servizio, I’adapter e il repository mockato,
restituendo una lista di ChatDTO correttamente mappata a partire da
entita ChatEntity. (chat history)

TI-02 Verificare che il flusso di inserimento chat (in db) nel controller ChatCon- \Y%

sumer richiami correttamente il servizio, ’adapter e il repository mockato,

e restituisca un ChatDTO costruito a partire da una ChatEntity. (chat
history)

TI-03 Verificare che il controller InsertLastUpdateController, attraverso il service \%

e I’adapter, invochi correttamente il metodo insertLastRetrieval del repo-

sitory con la data contenuta nel LastUpdateDTO e restituisca true. (chat
history)

TI-04 Verificare che il controller FetchLastUpdateController, attraverso il service \Y%
e 'adapter, invochi il metodo fetchLastUpdate del repository, e restituisca
un LastUpdateDTO contenente il valore corretto. (chat history)

TI-05 Verificare I'interazione tra il componente Header e il hook useTheme per \%
il cambio di tema. (frontend)

TI-06 Verificare I'interazione tra il Navbar e il componente per il cambio di tema. \%

(frontend)

TI-07 Verificare che il componente ModeToggle interagisca correttamente con il \%
hook useTheme. (frontend)

TI-08 Verificare I'integrazione del provider ChatProvider nel componente Chat- \%

Window. (frontend)
TI-09 Verifica che sendMessage venga chiamato al submit del messaggio (incluso \%

tasto Enter). (frontend)

TI-10 Verifica che il pulsante «Load more» e gli stati di errore e caricamento \
vengano correttamente gestiti. (frontend)

TI-11 Verifica che il ChatProvider integri correttamente ’adapter e gestisca la \%
cronologia dei messaggi. (frontend)

TI-12 Verifica che i messaggi vengano caricati correttamente quando viene \%
inviato un nuovo messaggio. (frontend)
TI-13 Verifica che fetchHistory invii la richiesta corretta al’API con i parametri \%
giusti. (frontend)
TI-14 Verifica che fetchQuestion invii correttamente la domanda all’API (fron- A
tend)
TI-15 Verifica che fetchHistory restituisca i dati corretti quando la risposta \%

dell’API ¢ positiva. (frontend)

23/ 46


https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#requisiti
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#capitolato

Piano di Qualifica

TI-16 Verifica che fetchQuestion restituisca correttamente la risposta dall’APL \%
(frontend)
TI-17 Verificare che il sistema possa recuperare e memorizza- \%

re i documenti di Confluence attraverso [lintero flusso
(ConfluenceFetchAndStore.integration.spec.ts). (information vector db)

TI-18 Verificare che il sistema gestisca correttamente gli errori durante il recupe- \%
ro dei dati da Confluence (ConfluenceFetchAndStore.integration.spec.ts).
(information vector db)

TI-19 Verificare che il sistema gestisca correttamente gli er- \%
rori durante la memorizzazione dei dati di Confluence
(ConfluenceFetchAndStore.integration.spec.ts). (information vector db)

TI-20 Verificare che il sistema possa recuperare e memorizzare le informazioni A
di GitHub con successo (GithubFetchAndStore.integration.spec.ts). (infor-
mation vector db)

TI-21 Verificare che il sistema gestisca correttamente gli errori durante il \%
recupero dei dati da GitHub (GithubFetchAndStore.integration.spec.ts).
(information vector db)

TI-22 Verificare che il sistema gestisca correttamente gli errori durante il flusso di \%
lavoro di GitHub (GithubFetchAndStore.integration.spec.ts). (information
vector db)
TI-23 Verificare che il sistema possa recuperare e memorizzare i ticket di Jira \%

attraverso l'intero flusso (JiraFetchAndStore.integration.spec.ts). (infor-
mation vector db)

TI-24 Verificare che il sistema gestisca correttamente gli errori durante il recu- \%
pero dei dati da Jira (JiraFetchAndStore.integration.spec.ts). (information
vector db)
TI-25 Verificare che il sistema gestisca correttamente gli errori durante la \%

memorizzazione dei dati di Jira (JiraFetchAndStore.integration.spec.ts).
(information vector db)

TI-26 Verificare che il sistema possa recuperare le informazioni quando viene \%
chiamato direttamente (RetrievalService.integration.spec.ts). (information
vector db)

TI-27 Verificare che il sistema gestisca correttamente gli errori durante il recupe- \%
ro delle informazioni (RetrievalService.integration.spec.ts). (information
vector db)

TI-28 Verificare che GET /get-storico restituisca 500 se HistoryService \%
risponde con dati malformati. (api gateway)

TI-29 Verificare che POST /get-risposta restituisca 500 se il servizio RabbitMQ A%
del chatbot non ¢ raggiungibile. (api gateway)

TI-30 Verificare che una richiesta GET /get-storico invochi correttamente \%
GetStoricoService — StoricoMessageAdapter — HistoryService, re-
stituendo ChatDTO[] con i campi question.content e answer.content.

(api gateway)

TI-31 Verificare che wuna richiesta POST  /get-risposta invochi \%
GetRispostaService — MessageAdapter (per il chatbot) —

24/ 46




Piano di Qualifica

StoricoMessageAdapter (per il salvataggio), e restituisca un ChatDTO0 con

la struttura annidata { question: { content, timestamp }, ... }.(api
gateway)
TI-32 Verificare che il flusso di salvataggio data ultimo fetch (postUpdate) \%

invochi HistoryService con la data corretta e restituisca true in caso di
successo. (api gateway)

TI-33 Verificare che il flusso di recupero data ultimo fetch (getLastUpdate) \%
restituisca un LastUpdateCMD con il campo LastFetch valorizzato. (api
gateway)
TI-34 Verificare che il flusso di salvataggio storico (postStorico) invochi \%

HistoryService con un Chat correttamente costruito e restituisca true in
caso di successo. (api gateway)

TI-35 Verificare che ElaborazioneService richiami correttamente i metodi sear- \%
chVectorDb del VectorDbPort e generateAnswer del LLMPort, passando i
parametri appropriati e restituendo la risposta generata. (chatbot)

TI-36 Verificare che ChatController, quando riceve una chiamata getAnswer \%

con un ReqAnswerDTO, crei correttamente un oggetto ReqAnswerCmd,

invochi il metodo getAnswer del caso d’uso ElaborazioneUseCase e resti-
tuisca la risposta ottenuta. (chatbot)

TI-37 Verificare che VectorDbAdapter, quando invocato con una query, chiami \%
correttamente il metodo sendMessage del VectorDbClient con i parametri
corretti e trasformi la risposta in un array di oggetti Information. (chatbot)

TI-38 Verificare che GroqAdapter (tramite implementazione mock) filtri corret- \Y

tamente i documenti che supererebbero il limite di token, producendo log

appropriati e restituendo una risposta basata sulle informazioni filtrate.
(chatbot)

TI-39 Verificare che GroqAdapter gestisca correttamente il caso di array di infor- \%
mazioni vuoto, restituendo una risposta predefinita che indica I’assenza di
informazioni rilevanti. (chatbot)

TI-40 Verificare che VectorDbAdapter propaghi correttamente gli errori prove- \%
nienti dal client e gestisca i casi di risposta vuota, restituendo un array
vuoto. (chatbot)

TI-41 Verificare che VectorDbAdapter possa elaborare le risposte JSON corretta- \%
mente quando queste sono gia state deserializzate. (chatbot)

Tabella 13: Stato dei test di integrazione

25/ 46




Piano di Qualifica

3.4) Test di sistema

I test di sistema sono una fase del processo di testing software che mira a verificare che il sistema

soddisfi i

specificati nella sezione Requisiti di funzionalita del documento Analisi dei

Requisiti. Questa fase di testing e condotta sul sistema nel suo complesso, dopo che i test di unita e di

integrazione sono stati completati con successo. L’obiettivo principale dei test di sistema é assicurare

che I’applicazione sia in grado di svolgere le sue funzioni nel contesto del suo ambiente operativo.

ni necessarie da (id della pagina, il titolo, lo
status...)

Codice Descrizione Stato Requisito
TS-01 Verificare che l'utenta riesca ad accedere all’applicazione \% RF-001
senza autenticazione
TS-02 Verificare che l'utente possa visualizzare correttamente lo \4 RF-002
storico della chat
TS-03 Verificare che I'utente visualizzi un messaggio nel caso in cui \% RF-003
non ci siano messaggi nello storico
TS-04 Verificare che l'utente visualizzi un messaggio di errore nel Vv RF-004
caso in cui il sistema non sia riuscito a recuperare corretta-
mente lo storico
TS-05 Verificare che I'utente visualizzi un messaggio di errore nel \% RF-005
caso in cui il sistema non riesca a connettersi
TS-06 Verificare che 'utente visualizzi un messaggio di errore nel \4 RF-006
caso in cui il backend non risulti disponibile
TS-07 Verificare che I'utente possa visualizzare per ogni messaggio \% RF-007
il suo contenuto, data, orario di invio e mittente
TS-08 Verificare che, attraverso I'interfaccia utente, I'utente sia in \% RF-008
grado di porre una domanda in linguaggio naturale
TS-09 Verificare che I'utente riesca ad inviare la domanda scritta \% RF-009
attraverso la al sistema
TS-10 Verificare che, nel caso in cui ci sia stato un errore durante la \Y% RF-010
generazione della risposta, 'utente visualizzi un messaggio di
errore
TS-11 Verificare che il sistema notifichi all’'utente un messaggio di \% RF-011
errore nel caso in cui la risposta non venga generata perché
supera la lunghezza massima consentita
TS-12 Verificare che il sistema notifichi all’utente un messaggio di Vv RF-012
errore nel caso in cui la domanda superi la lunghezza massima
consentita
TS-13 Verificare che il sistema elabori correttamente la domanda \ RF-013
dell’utente, generando una risposta attinente e appropriata
TS-14 | Verificare che il sistema riesca a reperire tutte le informazioni \ RF-014
necessarie da (nome della repository, la sua descri-
zione, informazioni sui ticket, commit...)
TS-15 Verificare che il sistema riesca a reperire tutte le informazio- \Y RF-015

26/ 46



https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#requisiti
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#user-interface
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#github
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#confluence

Piano di Qualifica

Verificare che il sistema riesca a reperire tutte le informazioni
necessarie da (nome di un , il suo assegnatario,
stato, ticket collegati...)

\Y% RF-016

TS-17

Verificare che il sistema riesca gestire correttamente domande
fuori contesto, generando una risposta attinente e appropriata

\% RF-017

TS-18

Verificare che, nel caso in cui ci sia stato un errore durante la
generazione della risposta, I'utente visualizzi un messaggio di
errore

\Y RF-018

TS-19

Verificare che il sistema informi I’'utente se la risposta supera
la lunghezza massima consentita

\Y% RF-019

TS-20

Verificare che il sistema fornisca correttamente la data e
Porario dell’ultimo aggiornamento dei dati utilizzati

\Y% RF-020

TS-21

Verificare che ogni 24 ore il sistema aggiorni i dati contenuti
nei documenti provenienti da GitHub, Confluence e Jira

\% RF-021

Tabella 14: Stato dei test di sistema

27/ 46



https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#jira
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#ticket

Piano di Qualifica

3.5) Test di accettazione

I test di accettazione sono finalizzati a garantire che il prodotto soddisfi i
ficati nel capitolato. Essi vengono eseguiti in presenza del committente e dimostrano la conformita del
prodotto alle aspettative attraverso I’esecuzione dei casi di prova previsti nel capitolato. Il superamento
positivo di tali test durante il collaudo finale generalmente conduce al rilascio definitivo del prodotto.

utente come speci-

Codice Descrizione Stato Fonte
TA-01 Verificare che I'utente possa visualizzare lo storico della chat \% UC1
TA-02 | Verificare che per ogni messaggio I'utente possa visualizzare: \4 UC1.4, UC14.1,
contenuto, data, orario, mittente UC1.4.2,UC1.4.3

TA-03 | Verificare che l'utente possa inserire ed inviare attraverso \% UC2

I'interfaccia utente una nuova domanda
TA-04 | Verificare che la domanda scritta da un utente venga inviata Vv UcCs3
correttamente al sistema attraverso la
TA-05 Verificare che il sistema generi una risposta appropriata dopo \% UcC4
aver elaborato correttamente la domanda dell’utente
TA-06 | Verificare che il sistema recuperi tutte le informazioni neces- \4 UC4
sarie da
TA-07 | Verificare che il sistema recuperi tutte le informazioni neces- \% UC4
sarie da
TA-08 Verificare che il sistema recuperi tutte le informazioni neces- A% UC4
sarie da

TA-09 Verificare che il sistema fornisca data e orario dell’ultimo \% UC4.4

aggiornamento dei dati utilizzati

Tabella 15: Stato dei test di accettazione

28 /46



https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#requisiti
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#user-interface
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#github
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#confluence
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#jira

Piano di Qualifica

4) Cruscotto di valutazione della qualita

4.1) M-PRC-EAC - Estimated at Completion

== == BAC (Valore ottimo) == == Limite accettabile superiore == == Limite accettabile inferiore @ EAC

13400 €

13200 €

13000 €

12800 €

12600 €

12400 €

12200 €

12000 €
SPRINT 1 SPRINT2 SPRINT3 SPRINT4 SPRINTS5 SPRINT6 SPRINT7 SPRINT8 SPRINT9 SPRINT 10

Figura 1: Proiezione della stima del costo totale nei vari periodi di progetto.

RTB: Il grafico illustra come varia 'EAC (Estimate at Completion) in relazione ai limiti accettabili
(superiore e inferiore) e al valore ottimale, rappresentato dal BAC (Budget at Completion), durante
i cinque sprint del progetto. L’EAC rappresenta una previsione aggiornata dei costi complessivi per
portare a termine il progetto, stimata sulla base dei dati raccolti durante I'esecuzione. Viene utilizzato
per identificare eventuali scostamenti rispetto al BAC, che corrisponde al budget inizialmente pianifi-
cato per il progetto. Osservando il grafico ne emerge che in seguito al secondo periodo del progetto
I’EAC ¢é sceso sotto il valore ottimale BAC, questo indica un’efficienza migliorata nell’'uso delle risorse
grazie a una riduzione dei costi ed a un’accelerazione nei tempi di completamento. Durante il terzo e
quarto sprint invece si puo notare un aumento del EAC a causa di difficolta operative e tecniche che
hanno richiesto al team di concentrarsi piu attivamente ad attivita di formazione e supporto piuttosto
che all’avanzamento vero e proprio del progetto. Infine nel quinto ed ultimo periodo la stima € rimasta
pressoché costante avvicinandosi al limite accettabile inferiore denotando una risoluzione efficace alle
lacune riscontrate durante i periodi precedenti portando ad una gestione piu rigorosa delle risorse.

PB: A partire dallo 6, EAC mostra un leggero aumento rispetto al periodo precedente,
avvicinandosi al BAC, a indicare una previsione di spesa leggermente superiore, ma comunque entro i
limiti accettabili. Tuttavia, gia nello 7 si osserva una nuova flessione, seguita da un calo piu
marcato nello 8, in cui si registra il valore minimo dell’intero intervallo considerato. Questa
diminuzione potrebbe essere legata a un’ottimizzazione dei processi o a una riduzione delle ore previste
in alcuni ruoli. Lo 9 segna un ulteriore lieve ribasso, per poi chiudere con un incremento
moderato nello 10. Nonostante queste variazioni, 'EAC rimane sempre contenuto entro i limiti

stabiliti, segno di una buona gestione economica nella fase finale del progetto.

29/ 46


https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#sprint
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#sprint
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#sprint
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#sprint
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#sprint

Piano di Qualifica

4.2) M-PRC-EV - Earned Value & M-PRC-PV - Planned Value

® EAC @ PV EV

13000 € = = . . -— . _ ~ :
12000 €

11000 €
10000 €
9000 €
8000 €
7000 €
6000 €
5000 €
4000 €
3000 €

2000 € /

1000 €

~

0€
SPRINT1 SPRINT2 SPRINT3 SPRINT4 SPRINT5 SPRINT6 SPRINT7 SPRINT8 SPRINT9 SPRINT 10

Figura 2: Proiezione dell’EV e del PV nei vari periodi di progetto.

RTB: Il grafico evidenzia la relazione tra il piano originale (PV), i progressi effettivi (EV) e le previsioni
di costo complessive aggiornate (EAC), permettendo di valutare l'efficacia e 'efficienza della gestione
del progetto durante i vari sprint. Osservando il grafico ne emerge una chiara corrispondenza tra la
curva del Valore Guadagnato (Earned Value) e quella del Valore Pianificato (Planned Value). Questo
allineamento indica che il lavoro completato é conforme alla pianificazione, suggerendo un progresso
coerente e in linea con gli obiettivi del progetto.

PB: A partire dallo 6, si osserva una prosecuzione dell’andamento parallelo tra il Valore Piani-
ficato (PV) e il Valore Guadagnato (EV), segno che le attivita procedono in linea con quanto previsto.
Questo trend positivo si mantiene costante anche negli successivi, con una perfetta sovrappo-
sizione tra le due curve fino allo 10, dove il progetto si conclude con il raggiungimento del
valore complessivo previsto. Per quanto riguarda ’EAC, la stima dei costi aggiornati resta sostanzial-
mente stabile, con leggere variazioni che non compromettono la coerenza generale. La convergenza di
PV, EV ed EAC verso il medesimo valore finale testimonia un’elevata efficacia nella pianificazione e nel
controllo, confermando che il progetto é stato completato rispettando sia i tempi che i costi prefissati.

30/ 46


https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#sprint
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#sprint
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#sprint

Piano di Qualifica

SWEETEN

4.3) M-PRC-AC - Actual Cost & M-PRC-ETC - Estimate to Complete

@ EAC @ ETC @ AC

13000 €

12000 €

11000 €

10000 €

9000 €

8000 €

7000 €

6000 €

5000 €

4000 €

3000 €

2000 €

1000 €

0€
SPRINT1 SPRINT2 SPRINT3 SPRINT4 SPRINT5 SPRINT6 SPRINT7 SPRINT8 SPRINT9 SPRINT 10

Figura 3: Proiezione dell’AC e del’ETC nei vari periodi di progetto.

RTB: Il grafico rappresenta I’Estimate to Complete (ETC), ovvero la stima dei costi rimanenti necessari
per completare il progetto, e I’Actual Cost (AC), che indica i costi reali sostenuti per il lavoro svolto
fino a quel momento. Si nota che I'ETC diminuisce progressivamente nel tempo, mentre I’AC cresce in
modo proporzionale al ritmo con cui si riduce ETC.

PB: Osservando il grafico, si nota un andamento complessivamente lineare e regolare dell’AC, che
cresce in modo costante durante tutti gli , senza evidenti fluttuazioni o discontinuita. Questo
suggerisce una distribuzione omogenea del carico di lavoro e un’efficace gestione delle risorse. Paral-
lelamente, ’ETC decresce gradualmente in modo proporzionale, riflettendo I’avanzamento costante del
progetto verso il completamento. Al termine dell’ultimo sprint, corrispondente alla candidatura per
la revisione PB, I’AC raggiunge I’EAC, mentre ETC si assesta su un valore prossimo allo zero. Questo
risultato conferma che le attivita sono state eseguite secondo quanto pianificato, con una previsione
di spesa pressoché coincidente con quella effettiva e senza la necessita di revisioni straordinarie o
interventi correttivi.

31/46


https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#sprint

Piano di Qualifica

4.4) M-PRC-CV - Cost Variance & M-PRC-SV - Schedule Variance

® Ccv SV == == Valore ottimo inferiore == == Limite accettabile inferiore
10%
8%
6%
4%

2%

0% /\ P

-4%

-6%

-8%

-10%
SPRINT1 SPRINT2 SPRINT3 SPRINT4 SPRINTS5 SPRINT6 SPRINT7 SPRINT8 SPRINT9 SPRINT 10

Figura 4: Proiezione della CV e della SV nei vari periodi di progetto.

RTB: Il grafico evidenzia la Cost Variance (CV), rappresentante la differenza tra il valore guadagnato
(EV) e i costi sostenuti (AC) in percentuale, e la Schedule Variance (SV), indicando la differenza tra il
valore guadagnato (EV) e il valore pianificato (PV) in percentuale.

Durante il primo sprint entrambi gli indicatori risultano negativi: i costi superano il valore realizzato
e il progetto accumula ritardi rispetto alla pianificazione. Nel secondo sprint il Controllo dei Costi
(Cv) si attesta in positivo, segnalando una gestione piu efficiente, mentre lo Scarto dei Tempi (SV)
recupera leggermente pur rimanendo in negativo. Durante il terzo sprint lo SV peggiora ulteriormente,
evidenziando un ritardo crescente, e sebbene il CV rimanga positivo, si registra una sua flessione, a
indicare un incremento delle spese rispetto ai precedenti sprint. La svolta avviene nel quarto sprint,
in cui entrambe le misure si avvicinano ai parametri ideali, a testimonianza di un miglioramento nella
gestione sia del budget che delle tempistiche. Infine, nel quinto sprint il trend positivo si consolida: il
controllo dei costi continua a rafforzarsi e, per la prima volta, il ritardo accumulato si trasforma in un
avanzo temporale, indicando non solo il recupero delle criticita iniziali, ma anche un progresso oltre
il piano stabilito.

PB: Guardando il grafico a partire dallo 6, si osserva come la CV (Cost Variance) si mantenga
sempre vicina allo 0%, indicando un’elevata coerenza tra i costi sostenuti e il valore effettivamente
guadagnato. Questo andamento regolare suggerisce una gestione economica estremamente accurata
nella fase finale del progetto. Per quanto riguarda la SV (Schedule Variance), anche in questo caso
le variazioni risultano contenute: dopo un lieve calo iniziale allo 6, la curva risale progressi-
vamente, stabilizzandosi su valori prossimi allo zero fino alla conclusione. Questi dati confermano un
controllo efficace della pianificazione e dell’avanzamento: il gruppo ha infatti rispettato tempi e attivita
con grande precisione nella fase che va dalla RTB fino alla PB, mantenendo entrambe le variabili entro
i limiti ottimali e senza scostamenti significativi.

32/ 46


https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#sprint
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#sprint

Piano di Qualifica

4.5) M-PRC-RSI - Requirements stability index

@® RS|I == == Limite accettabile inferiore == == Valore ottimo

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
SPRINT1 SPRINT2 SPRINT3 SPRINT4 SPRINTS5 SPRINT6 SPRINT7 SPRINT8 SPRINT9 SPRINT 10

Figura 5: Proiezione del RSI nei vari periodi di progetto.

RTB: Il grafico illustra la dinamica della metrica Requirements stability index (RSI), volta a valutare
la stabilita dei requisiti del progetto nel corso del tempo. Emerge chiaramente una rapida crescita alla
fine del secondo periodo, coincidente con I’avvio dell’analisi dei requisiti da parte del gruppo. Inoltre,
si nota un ulteriore aumento alla fine del terzo periodo, indicativo di modifiche e/o aggiornamenti
nell’analisi dei requisiti che sono andati a diminuire. Il parametro poi é diminuito alla fine del quarto
periodo per via di modifiche importanti, necessarie a raggiungere un livello di dettaglio dei requisiti
ancora maggiore. Infine si nota che nel quinto ed ultimo periodo i requisiti sono migliorati fino ad
arrivare ad un valore RSI pari al 100%.

PB: Dal grafico si pu6 osservare come, in seguito a un piccolo aggiustamento dei requisiti avvenuto
durante la revisione RTB nell 6, 1 requisiti siano rimasti sostanzialmente stabili a partire dallo

6, mantenendo un RSI prossimo al 100%. Questo dato riflette una fase di progetto ben conso-
lidata, caratterizzata da una forte coerenza nei requisiti, che ha comportato vantaggi significativi quali
maggiore stabilita del Piano di Progetto, risparmio di tempo e risorse, chiarezza negli obiettivi e
riduzione del rischio di errori. Va tuttavia segnalato che, in chiusura dello 9, & stato necessario
intervenire per correggere alcuni requisiti risultati poco precisi. Tale intervento, sebbene limitato, non
ha compromesso la stabilita generale, ma dimostra un’attenta attivita di controllo e validazione che ha
ulteriormente rafforzato la qualita del lavoro svolto. Una solida Analisi dei Requisiti iniziale sie
dunque rivelata determinante per il buon esito del progetto.

33/46


https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#sprint
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#sprint
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#sprint

A
Piano di Qualifica

SWEETEN

4.6) M-PRC-GLP - Indice Gulpease

== == Valore ottimo inferiore == == Limite accettabile inferiore @ Glossario @ PdP @ PdQ @ NdP
AdR @ ST @ MU

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
SPRINT1 SPRINT2 SPRINT3 SPRINT4 SPRINTS5 SPRINT6 SPRINT7 SPRINT8 SPRINT9 SPRINT 10

Figura 6: Proiezione dell’indice Gulpease per ogni documento (RTB) nei vari periodi di progetto.

RTB: Dall’osservazione del grafico si evidenzia come, per la maggior parte dei documenti, 'indice tenda
ad aumentare o a rimanere stabile nel tempo. L’unica eccezione é il Piano di Progetto, che si discosta
da questa tendenza a causa delle significative modifiche apportate al suo contenuto nel corso dei
periodi considerati. Va inoltre notato che I’Analisi dei Requisiti & l’'unico documento che inizia al
di sotto del limite inferiore accettabile, un fenomeno riconducibile alla natura specifica degli argomenti
trattati e al linguaggio utilizzato. Nonostante cio, tutti i documenti risultano comprensibili anche per
chi possiede un livello di istruzione pari alla licenza media.

PB: Osservando il grafico si pud notare come, nei periodi successivi alla revisione RTB, i documenti
gia esistenti abbiano mantenuto un indice di Gulpease pressoché stabile, in linea con i valori prece-
denti. Questo evidenzia una costanza nella qualita redazionale e nella comprensibilita dei testi, senza
variazioni rilevanti nella complessita sintattica o nella struttura linguistica. A questi si sono aggiunti il
Manuale UtenteelaSpecifica Tecnica.Il primo presenta un indice piu elevato, risultando quindi pit
accessibile, mentre il secondo ha un valore inferiore, coerente con la natura tecnica e dettagliata del
suo contenuto. Tale differenza é attesa e perfettamente giustificata. In conclusione, possiamo affermare
che tutti i documenti prodotti risultano leggibili e comprensibili da parte di utenti con almeno il titolo
di licenza media, garantendo cosi 'accessibilita della documentazione anche a persone non esperte.

34/ 46



A
Piano di Qualifica

SWEETEN

4.7) M-PRC-CO - Correttezza Ortografica

== == Valoreottimo @ Glossario @ PdP @ PdQ @ NdP AdR @ ST @ MU

P

SPRINT1T SPRINT2 SPRINT3 SPRINT4 SPRINTS5 SPRINT6 SPRINT7 SPRINT8 SPRINT9 SPRINT 10

Figura 7: Proiezione della correttezza ortografica nei vari periodi di progetto.

RTB: Dal grafico si nota un impegno costante da parte del gruppo nel mantenere i documenti privi di
errori ortografici. Sebbene alcuni errori siano inevitabilmente sfuggiti, la maggior parte dei documenti
¢ rimasta senza errori per la maggior parte del tempo, raggiungendo un livello ottimale di accuratezza
nell’ultimo periodo.

PB: Il grafico mostra come il numero di errori ortografici sia rimasto contenuto anche nella seconda
parte del progetto, dimostrando una cura costante nella revisione dei testi. Sebbene lo zero assoluto
di errori sia stato raggiunto su tutti i documenti solo nell’ultimo periodo, questo risultato evidenzia
un progressivo miglioramento e una crescente attenzione alla qualita formale della documentazione.
Il traguardo finale riflette un impegno continuo nel rilevare e correggere anche i piu piccoli refusi, pur
riconoscendo che, nel corso del lavoro, qualche imperfezione puo essere sfuggita.

35/46



Piano di Qualifica

4.8) M-PRC-QMS - Quality Metrics Satisfied

® QMS == = Limite accettabile inferiore == == Valore ottimo

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%

SPRINT1 SPRINT2 SPRINT3 SPRINT4 SPRINTS5 SPRINT6 SPRINT7 SPRINT8 SPRINT9 SPRINT 10

Figura 8: Proiezione della percentuale di metriche di qualita soddisfatte nei vari periodi di progetto.

RTB: Il grafico evidenzia che, nei primi periodi, alcune metriche di qualita definite dal gruppo non hanno
raggiunto i valori desiderati, principalmente a causa dell’inesperienza iniziale dei membri. Tuttavia,
grazie all’apprendimento dagli errori commessi, si ¢ osservato un costante miglioramento, che ha
portato a raggiungere valori accettabili e infine il livello ottimale (100%) al termine del quinto periodo.
Questo risultato riflette un progresso significativo nel nostro approccio lavorativo e nei risultati quali-
tativi ottenuti.

PB: Il grafico evidenzia come, in seguito al superamento della revisione RTB, il valore della metrica si sia
mantenuto costantemente al di sopra della soglia accettabile, a testimonianza di un livello qualitativo
complessivamente positivo. Nelle fasi iniziali di questa seconda parte del progetto si osserva un leggero
calo, coerente con la consapevolezza che il pieno soddisfacimento delle metriche di qualita sarebbe
stato raggiunto solo in prossimita della chiusura del lavoro. Nell’ultimo periodo, si registra un chiaro
miglioramento: quasi tutte le metriche hanno raggiunto valori pienamente accettabili, e in alcuni casi
anche ottimali. Questo risultato conferma il costante impegno del gruppo nel perfezionare la qualita
del prodotto, e rappresenta un segnale tangibile dell’efficacia delle strategie correttive adottate nel
tempo.

36/ 46



Piano di Qualifica

4.9) M-PRC-NCR - Non-Calculated Risk

@® NCR == == Limite accettabile superiore == == Valore ottimo

10

SPRINT1T SPRINT2 SPRINT3 SPRINT4 SPRINTS5 SPRINT6 SPRINT7 SPRINT8 SPRINT9 SPRINT 10

Figura 9: Proiezione rischi non identificati nei vari periodi di progetto.

RTB: Il grafico evidenzia come il gruppo abbia mantenuto un’ottima capacita di previsione dei rischi
per lintera durata del periodo considerato, senza che emergessero situazioni inattese. Sebbene la
metrica non garantisca una futura assenza assoluta di rischi non previsti, indica che nessun rischio
non anticipato si e verificato, sottolineando la precisione e I'efficacia nella gestione dei rischi da parte
del gruppo.

PB: Anche negli ultimi cinque , il grafico conferma I’elevata capacita del gruppo nel prevedere
e gestire i rischi. Non si sono verificate situazioni impreviste, e la metrica ha mantenuto valori stabili,
a riprova della solidita del processo di analisi e monitoraggio dei rischi adottato. Questo andamento
costante riflette una pianificazione accurata e un controllo efficace, che hanno contribuito a mantenere
il progetto su binari sicuri fino alla sua conclusione.

37/ 46


https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#sprint

Piano di Qualifica

4.10) M-PRC-TE - Temporal Efficiency

@® TE == == Limite accettabile superiore == == Valore ottimo

SPRINT1T SPRINT2 SPRINT3 SPRINT4 SPRINTS5 SPRINT6 SPRINT7 SPRINT8 SPRINT9 SPRINT 10

Figura 10: Proiezione dell’efficienza temporale nei vari periodi di progetto.

RTB: Il grafico mostra I’andamento della metrica sull’efficienza temporale nel corso dei vari periodi. Nei
primi due periodi, la metrica si posiziona oltre il limite superiore accettabile, per poi stabilizzarsi entro
valori adeguati a partire dal terzo periodo. Questo comportamento riflette il processo di adattamento
del gruppo alle nuove tecnologie, ambienti e linguaggi richiesti, oltre che alle pratiche di gestione del
progetto. Nel tempo, si osserva un netto miglioramento, con una riduzione del tempo necessario per
raggiungere i risultati desiderati, segno di una maggiore esperienza acquisita dai membri del gruppo.

PB: Nella seconda parte del progetto, durante lo 6, abbiamo ottenuto un buon miglioramento
della metrica, avvicinandoci a una corrispondenza tra le ore produttive e quelle di orologio, anche
se non perfetta. Questo risultato é stato possibile grazie al fatto che ci siamo concentrati su compiti
che gia conoscevamo bene, come il perfezionamento dei requisiti del progetto e dei test di sistema,
attivita che ci permettevano di lavorare in modo piu efficiente. Nello 7, la metrica ¢ aumentata,
superando il limite accettabile superiore, a causa dell’introduzione di nuove attivita, come la proget-
tazione del prodotto, con cui non avevamo esperienza. Questo ha portato ad un aumento delle ore di
orologio rispetto alle ore produttive. Nel periodo successivo, durante lo 8, abbiamo registrato
un miglioramento, scendendo a un valore di 3. Da li in poi, la metrica é continuata a migliorare, fino a
stabilizzarsi intorno a 2: 30, rientrando cosi nei limiti accettabili.

38/ 46


https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#sprint
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#sprint
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#sprint

Piano di Qualifica

SWEETEN

4.11) M-PRC-PTCP - Passed Test Cases Percentage

@® PTCP == == Limite accettabile inferiore == == Valore ottimo

100% —_——— - - -

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
SPRINT 6 SPRINT 7 SPRINT 8 SPRINT 9 SPRINT 10

Figura 11: Proiezione della percentuale di test terminati con successo nei vari periodi di progetto.

PB: L’analisi del grafico mostra che, fin dall’introduzione dei primi test, avvenuta all’inizio dello

8, questi sono stati sempre completamente superati. E importante sottolineare che non esiste alcuna
differenza tra il limite minimo accettabile e il valore ottimale per questa metrica, poiché e fondamentale
che il prodotto superi con successo tutti i test a cui viene sottoposto. Questo evidenzia I'importanza di
mantenere costantemente alti standard di performance e qualita durante tutto il processo di sviluppo.

39/ 46


https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#sprint

Piano di Qualifica

SWEETEN

4.12) M-PRD-CRV - Copertura dei requisiti obbligatori (vincolanti)

@® CRV = == Limite accettabile inferiore == == Valore ottimo

100% —_——— - - ——— - —

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
SPRINT 6 SPRINT 7 SPRINT 8 SPRINT 9 SPRINT 10

Figura 12: Proiezione della copertura dei requisiti obbligatori (vincolanti) nei vari periodi di progetto.

PB: Osservando il grafico si nota come la copertura dei requisiti obbligatori sia iniziata gradualmente,
con i primi completamenti registrati a partire dallo 7. 11 lavoro su questi requisiti & poi prose-
guito in modo piu intenso nello Sprint successivo, dove si ¢ raggiunto un buon livello di avanzamento.
La fase conclusiva del progetto ha visto il completamento quasi totale dei requisiti, portando alla loro
piena copertura entro I'ultimo sprint. Questo andamento riflette la scelta del gruppo di concentrarsi
inizialmente sulla progettazione dei moduli piu critici, per poi procedere con la loro implementazione
in modo strutturato e progressivo. La priorita attribuita a questa categoria di requisiti ha permesso
di rispettare pienamente gli obiettivi prefissati, assicurandone la completa realizzazione entro i tempi
stabiliti.

40 / 46


https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#sprint

Piano di Qualifica

SWEETEN

4.13) M-PRD-CRD - Copertura dei requisiti desiderabili

@® CRD == == Limite accettabile inferiore == == Valore ottimo

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
SPRINT 6 SPRINT 7 SPRINT 8 SPRINT 9 SPRINT 10

Figura 13: Proiezione della copertura dei requisiti desiderabili nei vari periodi di progetto.

PB: Dall’analisi del grafico emerge che la copertura dei desiderabili ha subito
un’accelerazione solo nelle fasi finali del progetto. Nelle prime iterazioni, infatti, non ¢ stato possibile
dedicare tempo a queste funzionalita, poiché le risorse sono state completamente assorbite dal comple-
tamento dei obbligatori e dalla definizione dell’architettura del sistema. Solo a partire dagli
ultimi il gruppo é riuscito a concentrarsi su questi aspetti. Questa scelta € stata condivisa con
lazienda, che ha ritenuto opportuno privilegiare obiettivi ritenuti strategicamente piu rilevanti per
il progetto. Di conseguenza, I'integrazione dei desiderabili é avvenuta in modo mirato e
ponderato, senza compromettere la qualita complessiva del prodotto.

41/ 46


https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#requisiti
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#requisiti
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#sprint
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#requisiti

Piano di Qualifica

SWEETEN

4.14) M-PRD-CRO - Copertura dei requisiti opzionali

@® CRO == == Limite accettabile inferiore == == Valore ottimo inferiore

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
SPRINT 6 SPRINT 7 SPRINT 8 SPRINT 9 SPRINT 10

Figura 14: Proiezione della copertura dei requisiti opzionali nei vari periodi di progetto.

PB: Dal grafico si puo osservare come la copertura dei opzionali sia stata posticipata fino
alle fasi conclusive del progetto. Nei primi successivi alla revisione RTB non é stato possibile
dedicare risorse a queste funzionalita, poiché I’attenzione é stata concentrata principalmente sui

obbligatori e desiderabili. Solo a partire dallo 9 ¢ iniziato un lavoro concreto su
questa categoria, che ha trovato il suo completamento quasi totale nell’ultimo . La decisione
di procedere comunque con I'implementazione di diversi opzionali, pur non essendo stret-
tamente necessari, € stata motivata dalla volonta del gruppo di consegnare un prodotto quanto piu
completo possibile. Questo approccio ci ha permesso di superare il valore ottimale inferiore per la
metrica, migliorando ulteriormente la qualita percepita del sistema finale.

42 / 46


https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#requisiti
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#sprint
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#requisiti
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#sprint
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#sprint
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#requisiti

A
Piano di Qualifica

SWEETEN

4.15) M-PRD-CC - Code coverage

@® CC == == Limite accettabile inferiore == == Valore ottimo inferiore

100%

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
SPRINT 6 SPRINT 7 SPRINT 8 SPRINT 9 SPRINT 10

Figura 15: Proiezione della code coverage nei vari periodi di progetto.

PB: Analizzando il grafico, si osserva come la code coverage abbia registrato una crescita costante

a partire dallo 7, momento in cui abbiamo dato avvio all’attivita di testing, in parallelo allo

sviluppo del prodotto. Grazie a una pianificazione attenta e a un progressivo affinamento della strategia

di test, siamo riusciti a dedicare sempre piu risorse a questa attivita, fino a raggiungere, nell’ultimo

, un’ottima copertura del codice pari al 91, 75%, superiore al valore minimo richiesto. Riteniamo

che questo risultato testimoni efficacia del nostro approccio e 'attenzione costante alla qualita del
lungo tutto il processo di sviluppo.

43 / 46


https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#sprint
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#sprint
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#software

A
Piano di Qualifica

SWEETEN

4.16) M-PRD-BC - Branch coverage

@® BC = == Limite accettabile inferiore == == Valore ottimo

100%
90%
B0% | e e e e e e e — - — - =
70%
60%
50% == e e
40%
30%
20%

10%

0%

SPRINT 6 SPRINT 7 SPRINT 8 SPRINT 9 SPRINT 10

Figura 16: Proiezione della branch coverage nei vari periodi di progetto.

PB: Dall’analisi del grafico si osserva come, durante lo , la branch coverage fosse prossima
allo zero, per poi crescere gradualmente e superare il limite accettabile tra lo 8elo

9. Nel corso dello Sprint 10, il valore ha infine raggiunto una soglia prossima all’obiettivo ottimale di
circa 80%. Questo andamento suggerisce che I'introduzione dei test abbia dato risultati tangibili fin
dalle prime fasi, consentendo di coprire progressivamente un numero sempre maggiore di diramazioni
del flusso d’esecuzione del codice. Il superamento del limite minimo prima e I’avvicinamento al valore
ottimale poi evidenziano come la strategia di testing sia stata efficace nel garantire un progressivo
aumento della copertura e, di conseguenza, nell’assicurare solidita e affidabilita crescenti al

44/ 46


https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#sprint-6
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#sprint
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#sprint
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#software

Piano di Qualifica

SWEETEN

4.17) M-PRD-FD - Failure density

@® FD == == Limite accettabile inferiore == == Valore ottimo

100% —_——— - - -

90%

80%

70%

60%

50%

40%

30%

20%

10%

0%
SPRINT 6 SPRINT 7 SPRINT 8 SPRINT 9 SPRINT 10

Figura 17: Proiezione della failure density nei vari periodi di progetto.

PB: Dal momento dell’introduzione dei primi test, avvenuta all’inizio dello 8, il grafico
evidenzia che tutti i difetti del prodotto da noi individuati sono stati rilevati con successo. Questo
risultato € particolarmente significativo, poiché dimostra I'efficacia del processo di testing adottato.
Riuscire a trovare e correggere i difetti nelle fasi iniziali consente infatti di garantire una maggiore
qualita del prodotto finale, riducendo il rischio di errori e contribuendo a una maggiore soddisfazione
del cliente. Inoltre, 'individuazione tempestiva dei problemi permette di risparmiare tempo e risorse,
evitando che i difetti si accumulino e diventino pitt complessi da risolvere nelle fasi successive dello
sviluppo. Naturalmente, & importante precisare che aver identificato tutti i difetti fin dall’inizio del
testing non significa necessariamente che il prodotto sia completamente privo di errori. Anche con un
processo di testing accurato, &€ sempre possibile che alcune problematiche sfuggano al controllo o che
ne emergano di nuove a seguito di modifiche o interazioni complesse all’interno del sistema.

45/ 46


https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#sprint

Piano di Qualifica

SWEETEN

4.18) M-PRD-CS - Code smell

@® CS = == Valore accettabile == == Valore ottimo

1 /\

SPRINT 6 SPRINT 7 SPRINT 8 SPRINT 9 SPRINT 10

Figura 18: Proiezione del numero di code smell nei vari periodi di progetto.

PB: Il grafico mostra I'andamento del numero di code smell rilevati durante il progetto, intesi come
potenziali segnali di debolezza nella progettazione o nel codice che potrebbero richiedere interventi

correttivi. Durante lo 7 ¢ emerso un unico code smell in fase di progettazione, che abbiamo
affrontato e risolto prima di procedere con lo sviluppo, anche grazie al confronto con il Prof. Riccardo
Cardin. Negli altri il numero di code smell é rimasto sempre pari a zero. Questo andamento

evidenzia come I’attenzione posta nelle fasi iniziali ci abbia permesso di mantenere alta la qualita del
codice, prevenendo la comparsa di ulteriori criticita e garantendo una maggiore facilita di manuten-
zione e stabilita del sistema nel tempo.

46 / 46


https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#sprint
https://sweetenteam.github.io/docs/PB/Documentazione_Interna/Glossario#sprint

	Introduzione
	Scopo del documento
	Scopo del progetto
	Glossario
	Riferimenti
	Normativi
	Informativi


	Obiettivi di qualità
	Qualità di processo
	Processi primari
	Fornitura
	Sviluppo

	Processi di supporto
	Documentazione
	Verifica
	Gestione della qualità

	Processi organizzativi
	Gestione dei processi


	Qualità di prodotto
	Funzionalità
	Affidabilità
	Usabilità
	Efficienza
	Manutenibilità


	Strategie di testing
	Struttura tabelle
	Test di unità
	Test di integrazione
	Test di sistema
	Test di accettazione

	Cruscotto di valutazione della qualità
	M-PRC-EAC - Estimated at Completion
	M-PRC-EV - Earned Value & M-PRC-PV - Planned Value
	M-PRC-AC - Actual Cost & M-PRC-ETC - Estimate to Complete
	M-PRC-CV - Cost Variance & M-PRC-SV - Schedule Variance
	M-PRC-RSI - Requirements stability index
	M-PRC-GLP - Indice Gulpease
	M-PRC-CO - Correttezza Ortografica
	M-PRC-QMS - Quality Metrics Satisfied
	M-PRC-NCR - Non-Calculated Risk
	M-PRC-TE - Temporal Efficiency
	M-PRC-PTCP - Passed Test Cases Percentage
	M-PRD-CRV - Copertura dei requisiti obbligatori (vincolanti)
	M-PRD-CRD - Copertura dei requisiti desiderabili
	M-PRD-CRO - Copertura dei requisiti opzionali
	M-PRD-CC - Code coverage
	M-PRD-BC - Branch coverage
	M-PRD-FD - Failure density
	M-PRD-CS - Code smell


